This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a full functor (in fact, a full embedding) is a section, then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uobeq2.b | |- B = ( Base ` D ) |
|
| uobeq2.x | |- ( ph -> X e. B ) |
||
| uobeq2.f | |- ( ph -> F e. ( C Func D ) ) |
||
| uobeq2.g | |- ( ph -> ( K o.func F ) = G ) |
||
| uobeq2.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
||
| uobeq2.q | |- Q = ( CatCat ` U ) |
||
| uobeq2.s | |- S = ( Sect ` Q ) |
||
| uobeq2.k | |- ( ph -> K e. ( D Full E ) ) |
||
| uobeq2.1 | |- ( ph -> K e. dom ( D S E ) ) |
||
| Assertion | uobeq2 | |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobeq2.b | |- B = ( Base ` D ) |
|
| 2 | uobeq2.x | |- ( ph -> X e. B ) |
|
| 3 | uobeq2.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 4 | uobeq2.g | |- ( ph -> ( K o.func F ) = G ) |
|
| 5 | uobeq2.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
|
| 6 | uobeq2.q | |- Q = ( CatCat ` U ) |
|
| 7 | uobeq2.s | |- S = ( Sect ` Q ) |
|
| 8 | uobeq2.k | |- ( ph -> K e. ( D Full E ) ) |
|
| 9 | uobeq2.1 | |- ( ph -> K e. dom ( D S E ) ) |
|
| 10 | eldmg | |- ( K e. dom ( D S E ) -> ( K e. dom ( D S E ) <-> E. l K ( D S E ) l ) ) |
|
| 11 | 10 | ibi | |- ( K e. dom ( D S E ) -> E. l K ( D S E ) l ) |
| 12 | 9 11 | syl | |- ( ph -> E. l K ( D S E ) l ) |
| 13 | 2 | adantr | |- ( ( ph /\ K ( D S E ) l ) -> X e. B ) |
| 14 | 3 | adantr | |- ( ( ph /\ K ( D S E ) l ) -> F e. ( C Func D ) ) |
| 15 | 4 | adantr | |- ( ( ph /\ K ( D S E ) l ) -> ( K o.func F ) = G ) |
| 16 | 5 | adantr | |- ( ( ph /\ K ( D S E ) l ) -> ( ( 1st ` K ) ` X ) = Y ) |
| 17 | eqid | |- ( idFunc ` D ) = ( idFunc ` D ) |
|
| 18 | 8 | adantr | |- ( ( ph /\ K ( D S E ) l ) -> K e. ( D Full E ) ) |
| 19 | eqid | |- ( Hom ` Q ) = ( Hom ` Q ) |
|
| 20 | 6 19 17 7 | catcsect | |- ( K ( D S E ) l <-> ( ( K e. ( D ( Hom ` Q ) E ) /\ l e. ( E ( Hom ` Q ) D ) ) /\ ( l o.func K ) = ( idFunc ` D ) ) ) |
| 21 | 20 | simprbi | |- ( K ( D S E ) l -> ( l o.func K ) = ( idFunc ` D ) ) |
| 22 | 21 | adantl | |- ( ( ph /\ K ( D S E ) l ) -> ( l o.func K ) = ( idFunc ` D ) ) |
| 23 | 20 | simplbi | |- ( K ( D S E ) l -> ( K e. ( D ( Hom ` Q ) E ) /\ l e. ( E ( Hom ` Q ) D ) ) ) |
| 24 | 23 | simprd | |- ( K ( D S E ) l -> l e. ( E ( Hom ` Q ) D ) ) |
| 25 | 6 19 24 | elcatchom | |- ( K ( D S E ) l -> l e. ( E Func D ) ) |
| 26 | 25 | adantl | |- ( ( ph /\ K ( D S E ) l ) -> l e. ( E Func D ) ) |
| 27 | 1 13 14 15 16 17 18 22 26 | uobeq | |- ( ( ph /\ K ( D S E ) l ) -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |
| 28 | 12 27 | exlimddv | |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |