This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a full functor (in fact, a full embedding) is a section of a functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uobffth.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| uobffth.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| uobffth.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | ||
| uobffth.g | ⊢ ( 𝜑 → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) | ||
| uobffth.y | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) | ||
| uobeq.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | ||
| uobeq.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Full 𝐸 ) ) | ||
| uobeq.n | ⊢ ( 𝜑 → ( 𝐿 ∘func 𝐾 ) = 𝐼 ) | ||
| uobeq.l | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐸 Func 𝐷 ) ) | ||
| Assertion | uobeq | ⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobffth.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | uobffth.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 3 | uobffth.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 4 | uobffth.g | ⊢ ( 𝜑 → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) | |
| 5 | uobffth.y | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) | |
| 6 | uobeq.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| 7 | uobeq.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Full 𝐸 ) ) | |
| 8 | uobeq.n | ⊢ ( 𝜑 → ( 𝐿 ∘func 𝐾 ) = 𝐼 ) | |
| 9 | uobeq.l | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐸 Func 𝐷 ) ) | |
| 10 | relfunc | ⊢ Rel ( 𝐷 Func 𝐸 ) | |
| 11 | fullfunc | ⊢ ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 ) | |
| 12 | 11 7 | sselid | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) |
| 13 | 1st2nd | ⊢ ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) | |
| 14 | 10 12 13 | sylancr | ⊢ ( 𝜑 → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) |
| 15 | 12 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐾 ) ) |
| 16 | 9 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) ( 𝐸 Func 𝐷 ) ( 2nd ‘ 𝐿 ) ) |
| 17 | 12 9 | cofu1st2nd | ⊢ ( 𝜑 → ( 𝐿 ∘func 𝐾 ) = ( 〈 ( 1st ‘ 𝐿 ) , ( 2nd ‘ 𝐿 ) 〉 ∘func 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) ) |
| 18 | 17 8 | eqtr3d | ⊢ ( 𝜑 → ( 〈 ( 1st ‘ 𝐿 ) , ( 2nd ‘ 𝐿 ) 〉 ∘func 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) = 𝐼 ) |
| 19 | 6 15 16 18 | cofidfth | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) ( 𝐷 Faith 𝐸 ) ( 2nd ‘ 𝐾 ) ) |
| 20 | df-br | ⊢ ( ( 1st ‘ 𝐾 ) ( 𝐷 Faith 𝐸 ) ( 2nd ‘ 𝐾 ) ↔ 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ∈ ( 𝐷 Faith 𝐸 ) ) | |
| 21 | 19 20 | sylib | ⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ∈ ( 𝐷 Faith 𝐸 ) ) |
| 22 | 14 21 | eqeltrd | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Faith 𝐸 ) ) |
| 23 | 7 22 | elind | ⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) |
| 24 | 1 2 3 4 5 23 | uobffth | ⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |