This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A fully faithful functor generates equal sets of universal objects. (Contributed by Zhi Wang, 19-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uobffth.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| uobffth.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| uobffth.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | ||
| uobffth.g | ⊢ ( 𝜑 → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) | ||
| uobffth.y | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) | ||
| uobffth.k | ⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) | ||
| Assertion | uobffth | ⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobffth.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | uobffth.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 3 | uobffth.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 4 | uobffth.g | ⊢ ( 𝜑 → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) | |
| 5 | uobffth.y | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) | |
| 6 | uobffth.k | ⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) | |
| 7 | 19.42v | ⊢ ( ∃ 𝑚 ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) ↔ ( 𝜑 ∧ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) ) | |
| 8 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ∈ V ) | |
| 9 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) |
| 10 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) |
| 11 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) |
| 12 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) = ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) | |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) | |
| 14 | 9 10 11 12 13 | uptrai | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) |
| 15 | breq2 | ⊢ ( 𝑛 = ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) → ( 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ↔ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) ) | |
| 16 | 8 14 15 | spcedv | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) |
| 17 | 16 | exlimiv | ⊢ ( ∃ 𝑚 ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) |
| 18 | 7 17 | sylbir | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) |
| 19 | 19.42v | ⊢ ( ∃ 𝑛 ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) ↔ ( 𝜑 ∧ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) ) | |
| 20 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( ◡ ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ∈ V ) | |
| 21 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) |
| 22 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) |
| 23 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) |
| 24 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝑋 ∈ 𝐵 ) |
| 25 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 26 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( ◡ ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) = ( ◡ ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ) | |
| 27 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) | |
| 28 | 21 22 23 1 24 25 26 27 | uptrar | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ( ◡ ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ) |
| 29 | breq2 | ⊢ ( 𝑚 = ( ◡ ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) → ( 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ↔ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ( ◡ ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ) ) | |
| 30 | 20 28 29 | spcedv | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) |
| 31 | 30 | exlimiv | ⊢ ( ∃ 𝑛 ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) |
| 32 | 19 31 | sylbir | ⊢ ( ( 𝜑 ∧ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) |
| 33 | 18 32 | impbida | ⊢ ( 𝜑 → ( ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ↔ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) ) |
| 34 | relup | ⊢ Rel ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) | |
| 35 | releldmb | ⊢ ( Rel ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) → ( 𝑧 ∈ dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ↔ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) ) | |
| 36 | 34 35 | ax-mp | ⊢ ( 𝑧 ∈ dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ↔ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) |
| 37 | relup | ⊢ Rel ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) | |
| 38 | releldmb | ⊢ ( Rel ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) → ( 𝑧 ∈ dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ↔ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) ) | |
| 39 | 37 38 | ax-mp | ⊢ ( 𝑧 ∈ dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ↔ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) |
| 40 | 33 36 39 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑧 ∈ dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ↔ 𝑧 ∈ dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) ) |
| 41 | 40 | eqrdv | ⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |