This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If " F is a section of G " in a category of small categories (in a universe), then F is faithful. Combined with cofidf1 , this theorem proves that F is an embedding (a faithful functor injective on objects, remark 3.28(1) of Adamek p. 34). (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofidfth.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| cofidfth.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| cofidfth.k | ⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) | ||
| cofidfth.o | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) | ||
| Assertion | cofidfth | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Faith 𝐸 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidfth.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| 2 | cofidfth.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 3 | cofidfth.k | ⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) | |
| 4 | cofidfth.o | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 7 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) |
| 8 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) |
| 9 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 10 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 11 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐷 ) ) | |
| 12 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) | |
| 13 | 1 5 6 7 8 9 10 11 12 | cofidf2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) : ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) –onto→ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) |
| 14 | 13 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 15 | 14 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 16 | 5 9 10 | isfth2 | ⊢ ( 𝐹 ( 𝐷 Faith 𝐸 ) 𝐺 ↔ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 17 | 2 15 16 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Faith 𝐸 ) 𝐺 ) |