This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A unitary operator is idempotent in the norm. (Contributed by NM, 25-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unopnorm | |- ( ( T e. UniOp /\ A e. ~H ) -> ( normh ` ( T ` A ) ) = ( normh ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopf1o | |- ( T e. UniOp -> T : ~H -1-1-onto-> ~H ) |
|
| 2 | f1of | |- ( T : ~H -1-1-onto-> ~H -> T : ~H --> ~H ) |
|
| 3 | 1 2 | syl | |- ( T e. UniOp -> T : ~H --> ~H ) |
| 4 | 3 | ffvelcdmda | |- ( ( T e. UniOp /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
| 5 | normcl | |- ( ( T ` A ) e. ~H -> ( normh ` ( T ` A ) ) e. RR ) |
|
| 6 | 4 5 | syl | |- ( ( T e. UniOp /\ A e. ~H ) -> ( normh ` ( T ` A ) ) e. RR ) |
| 7 | normcl | |- ( A e. ~H -> ( normh ` A ) e. RR ) |
|
| 8 | 7 | adantl | |- ( ( T e. UniOp /\ A e. ~H ) -> ( normh ` A ) e. RR ) |
| 9 | normge0 | |- ( ( T ` A ) e. ~H -> 0 <_ ( normh ` ( T ` A ) ) ) |
|
| 10 | 4 9 | syl | |- ( ( T e. UniOp /\ A e. ~H ) -> 0 <_ ( normh ` ( T ` A ) ) ) |
| 11 | normge0 | |- ( A e. ~H -> 0 <_ ( normh ` A ) ) |
|
| 12 | 11 | adantl | |- ( ( T e. UniOp /\ A e. ~H ) -> 0 <_ ( normh ` A ) ) |
| 13 | unop | |- ( ( T e. UniOp /\ A e. ~H /\ A e. ~H ) -> ( ( T ` A ) .ih ( T ` A ) ) = ( A .ih A ) ) |
|
| 14 | 13 | 3anidm23 | |- ( ( T e. UniOp /\ A e. ~H ) -> ( ( T ` A ) .ih ( T ` A ) ) = ( A .ih A ) ) |
| 15 | normsq | |- ( ( T ` A ) e. ~H -> ( ( normh ` ( T ` A ) ) ^ 2 ) = ( ( T ` A ) .ih ( T ` A ) ) ) |
|
| 16 | 4 15 | syl | |- ( ( T e. UniOp /\ A e. ~H ) -> ( ( normh ` ( T ` A ) ) ^ 2 ) = ( ( T ` A ) .ih ( T ` A ) ) ) |
| 17 | normsq | |- ( A e. ~H -> ( ( normh ` A ) ^ 2 ) = ( A .ih A ) ) |
|
| 18 | 17 | adantl | |- ( ( T e. UniOp /\ A e. ~H ) -> ( ( normh ` A ) ^ 2 ) = ( A .ih A ) ) |
| 19 | 14 16 18 | 3eqtr4d | |- ( ( T e. UniOp /\ A e. ~H ) -> ( ( normh ` ( T ` A ) ) ^ 2 ) = ( ( normh ` A ) ^ 2 ) ) |
| 20 | 6 8 10 12 19 | sq11d | |- ( ( T e. UniOp /\ A e. ~H ) -> ( normh ` ( T ` A ) ) = ( normh ` A ) ) |