This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every set is contained in a weak universe. This is the analogue of grothtsk for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk . (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniwun | ⊢ ∪ WUni = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqv | ⊢ ( ∪ WUni = V ↔ ∀ 𝑥 𝑥 ∈ ∪ WUni ) | |
| 2 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 3 | wunex | ⊢ ( { 𝑥 } ∈ V → ∃ 𝑢 ∈ WUni { 𝑥 } ⊆ 𝑢 ) | |
| 4 | 2 3 | ax-mp | ⊢ ∃ 𝑢 ∈ WUni { 𝑥 } ⊆ 𝑢 |
| 5 | eluni2 | ⊢ ( 𝑥 ∈ ∪ WUni ↔ ∃ 𝑢 ∈ WUni 𝑥 ∈ 𝑢 ) | |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | 6 | snss | ⊢ ( 𝑥 ∈ 𝑢 ↔ { 𝑥 } ⊆ 𝑢 ) |
| 8 | 7 | rexbii | ⊢ ( ∃ 𝑢 ∈ WUni 𝑥 ∈ 𝑢 ↔ ∃ 𝑢 ∈ WUni { 𝑥 } ⊆ 𝑢 ) |
| 9 | 5 8 | bitri | ⊢ ( 𝑥 ∈ ∪ WUni ↔ ∃ 𝑢 ∈ WUni { 𝑥 } ⊆ 𝑢 ) |
| 10 | 4 9 | mpbir | ⊢ 𝑥 ∈ ∪ WUni |
| 11 | 1 10 | mpgbir | ⊢ ∪ WUni = V |