This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset relationship useful for converting union to indexed union using dfiun2 or dfiun2g and intersection to indexed intersection using dfiin2 . (Contributed by NM, 5-Oct-2006) (Proof shortened by Mario Carneiro, 26-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniiunlem | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 = 𝐵 ↔ 𝑧 = 𝐵 ) ) | |
| 2 | 1 | rexbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
| 3 | 2 | cbvabv | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } |
| 4 | 3 | sseq1i | ⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐶 ↔ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ 𝐶 ) |
| 5 | r19.23v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ) | |
| 6 | 5 | albii | ⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ) |
| 7 | ralcom4 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ) | |
| 8 | abss | ⊢ ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ 𝐶 ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ) | |
| 9 | 6 7 8 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ 𝐶 ) |
| 10 | 4 9 | bitr4i | ⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ) |
| 11 | nfv | ⊢ Ⅎ 𝑧 𝐵 ∈ 𝐶 | |
| 12 | eleq1 | ⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) | |
| 13 | 11 12 | ceqsalg | ⊢ ( 𝐵 ∈ 𝐷 → ( ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ 𝐵 ∈ 𝐶 ) ) |
| 14 | 13 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ 𝐵 ∈ 𝐶 ) ) |
| 15 | ralbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ 𝐵 ∈ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) ) | |
| 16 | 14 15 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) ) |
| 17 | 10 16 | bitr2id | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐶 ) ) |