This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of TakeutiZaring p. 99. (Contributed by NM, 25-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniimadom.1 | ⊢ 𝐴 ∈ V | |
| uniimadom.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | uniimadom | ⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ∪ ( 𝐹 “ 𝐴 ) ≼ ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniimadom.1 | ⊢ 𝐴 ∈ V | |
| 2 | uniimadom.2 | ⊢ 𝐵 ∈ V | |
| 3 | 1 | funimaex | ⊢ ( Fun 𝐹 → ( 𝐹 “ 𝐴 ) ∈ V ) |
| 4 | 3 | adantr | ⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ( 𝐹 “ 𝐴 ) ∈ V ) |
| 5 | fvelima | ⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ ( 𝐹 “ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) | |
| 6 | 5 | ex | ⊢ ( Fun 𝐹 → ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
| 7 | breq1 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ↔ 𝑦 ≼ 𝐵 ) ) | |
| 8 | 7 | biimpd | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 → 𝑦 ≼ 𝐵 ) ) |
| 9 | 8 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 → ∃ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 → 𝑦 ≼ 𝐵 ) ) |
| 10 | r19.36v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 → 𝑦 ≼ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 → 𝑦 ≼ 𝐵 ) ) | |
| 11 | 9 10 | syl | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 → 𝑦 ≼ 𝐵 ) ) |
| 12 | 6 11 | syl6 | ⊢ ( Fun 𝐹 → ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 → 𝑦 ≼ 𝐵 ) ) ) |
| 13 | 12 | com23 | ⊢ ( Fun 𝐹 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 → ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → 𝑦 ≼ 𝐵 ) ) ) |
| 14 | 13 | imp | ⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → 𝑦 ≼ 𝐵 ) ) |
| 15 | 14 | ralrimiv | ⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ∀ 𝑦 ∈ ( 𝐹 “ 𝐴 ) 𝑦 ≼ 𝐵 ) |
| 16 | unidom | ⊢ ( ( ( 𝐹 “ 𝐴 ) ∈ V ∧ ∀ 𝑦 ∈ ( 𝐹 “ 𝐴 ) 𝑦 ≼ 𝐵 ) → ∪ ( 𝐹 “ 𝐴 ) ≼ ( ( 𝐹 “ 𝐴 ) × 𝐵 ) ) | |
| 17 | 4 15 16 | syl2anc | ⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ∪ ( 𝐹 “ 𝐴 ) ≼ ( ( 𝐹 “ 𝐴 ) × 𝐵 ) ) |
| 18 | imadomg | ⊢ ( 𝐴 ∈ V → ( Fun 𝐹 → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) ) | |
| 19 | 1 18 | ax-mp | ⊢ ( Fun 𝐹 → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) |
| 20 | 2 | xpdom1 | ⊢ ( ( 𝐹 “ 𝐴 ) ≼ 𝐴 → ( ( 𝐹 “ 𝐴 ) × 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) |
| 21 | 19 20 | syl | ⊢ ( Fun 𝐹 → ( ( 𝐹 “ 𝐴 ) × 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) |
| 22 | 21 | adantr | ⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ( ( 𝐹 “ 𝐴 ) × 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) |
| 23 | domtr | ⊢ ( ( ∪ ( 𝐹 “ 𝐴 ) ≼ ( ( 𝐹 “ 𝐴 ) × 𝐵 ) ∧ ( ( 𝐹 “ 𝐴 ) × 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) → ∪ ( 𝐹 “ 𝐴 ) ≼ ( 𝐴 × 𝐵 ) ) | |
| 24 | 17 22 23 | syl2anc | ⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ∪ ( 𝐹 “ 𝐴 ) ≼ ( 𝐴 × 𝐵 ) ) |