This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of TakeutiZaring p. 99. (Contributed by NM, 25-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniimadom.1 | |- A e. _V |
|
| uniimadom.2 | |- B e. _V |
||
| Assertion | uniimadom | |- ( ( Fun F /\ A. x e. A ( F ` x ) ~<_ B ) -> U. ( F " A ) ~<_ ( A X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniimadom.1 | |- A e. _V |
|
| 2 | uniimadom.2 | |- B e. _V |
|
| 3 | 1 | funimaex | |- ( Fun F -> ( F " A ) e. _V ) |
| 4 | 3 | adantr | |- ( ( Fun F /\ A. x e. A ( F ` x ) ~<_ B ) -> ( F " A ) e. _V ) |
| 5 | fvelima | |- ( ( Fun F /\ y e. ( F " A ) ) -> E. x e. A ( F ` x ) = y ) |
|
| 6 | 5 | ex | |- ( Fun F -> ( y e. ( F " A ) -> E. x e. A ( F ` x ) = y ) ) |
| 7 | breq1 | |- ( ( F ` x ) = y -> ( ( F ` x ) ~<_ B <-> y ~<_ B ) ) |
|
| 8 | 7 | biimpd | |- ( ( F ` x ) = y -> ( ( F ` x ) ~<_ B -> y ~<_ B ) ) |
| 9 | 8 | reximi | |- ( E. x e. A ( F ` x ) = y -> E. x e. A ( ( F ` x ) ~<_ B -> y ~<_ B ) ) |
| 10 | r19.36v | |- ( E. x e. A ( ( F ` x ) ~<_ B -> y ~<_ B ) -> ( A. x e. A ( F ` x ) ~<_ B -> y ~<_ B ) ) |
|
| 11 | 9 10 | syl | |- ( E. x e. A ( F ` x ) = y -> ( A. x e. A ( F ` x ) ~<_ B -> y ~<_ B ) ) |
| 12 | 6 11 | syl6 | |- ( Fun F -> ( y e. ( F " A ) -> ( A. x e. A ( F ` x ) ~<_ B -> y ~<_ B ) ) ) |
| 13 | 12 | com23 | |- ( Fun F -> ( A. x e. A ( F ` x ) ~<_ B -> ( y e. ( F " A ) -> y ~<_ B ) ) ) |
| 14 | 13 | imp | |- ( ( Fun F /\ A. x e. A ( F ` x ) ~<_ B ) -> ( y e. ( F " A ) -> y ~<_ B ) ) |
| 15 | 14 | ralrimiv | |- ( ( Fun F /\ A. x e. A ( F ` x ) ~<_ B ) -> A. y e. ( F " A ) y ~<_ B ) |
| 16 | unidom | |- ( ( ( F " A ) e. _V /\ A. y e. ( F " A ) y ~<_ B ) -> U. ( F " A ) ~<_ ( ( F " A ) X. B ) ) |
|
| 17 | 4 15 16 | syl2anc | |- ( ( Fun F /\ A. x e. A ( F ` x ) ~<_ B ) -> U. ( F " A ) ~<_ ( ( F " A ) X. B ) ) |
| 18 | imadomg | |- ( A e. _V -> ( Fun F -> ( F " A ) ~<_ A ) ) |
|
| 19 | 1 18 | ax-mp | |- ( Fun F -> ( F " A ) ~<_ A ) |
| 20 | 2 | xpdom1 | |- ( ( F " A ) ~<_ A -> ( ( F " A ) X. B ) ~<_ ( A X. B ) ) |
| 21 | 19 20 | syl | |- ( Fun F -> ( ( F " A ) X. B ) ~<_ ( A X. B ) ) |
| 22 | 21 | adantr | |- ( ( Fun F /\ A. x e. A ( F ` x ) ~<_ B ) -> ( ( F " A ) X. B ) ~<_ ( A X. B ) ) |
| 23 | domtr | |- ( ( U. ( F " A ) ~<_ ( ( F " A ) X. B ) /\ ( ( F " A ) X. B ) ~<_ ( A X. B ) ) -> U. ( F " A ) ~<_ ( A X. B ) ) |
|
| 24 | 17 22 23 | syl2anc | |- ( ( Fun F /\ A. x e. A ( F ` x ) ~<_ B ) -> U. ( F " A ) ~<_ ( A X. B ) ) |