This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of TakeutiZaring p. 99. This version of uniimadom uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniimadomf.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| uniimadomf.2 | ⊢ 𝐴 ∈ V | ||
| uniimadomf.3 | ⊢ 𝐵 ∈ V | ||
| Assertion | uniimadomf | ⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ∪ ( 𝐹 “ 𝐴 ) ≼ ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniimadomf.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| 2 | uniimadomf.2 | ⊢ 𝐴 ∈ V | |
| 3 | uniimadomf.3 | ⊢ 𝐵 ∈ V | |
| 4 | nfv | ⊢ Ⅎ 𝑧 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 6 | 1 5 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑧 ) |
| 7 | nfcv | ⊢ Ⅎ 𝑥 ≼ | |
| 8 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 9 | 6 7 8 | nfbr | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑧 ) ≼ 𝐵 |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 11 | 10 | breq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ↔ ( 𝐹 ‘ 𝑧 ) ≼ 𝐵 ) ) |
| 12 | 4 9 11 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ↔ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) ≼ 𝐵 ) |
| 13 | 2 3 | uniimadom | ⊢ ( ( Fun 𝐹 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) ≼ 𝐵 ) → ∪ ( 𝐹 “ 𝐴 ) ≼ ( 𝐴 × 𝐵 ) ) |
| 14 | 12 13 | sylan2b | ⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ∪ ( 𝐹 “ 𝐴 ) ≼ ( 𝐴 × 𝐵 ) ) |