This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unfilem1.1 | |- A e. _om |
|
| unfilem1.2 | |- B e. _om |
||
| unfilem1.3 | |- F = ( x e. B |-> ( A +o x ) ) |
||
| Assertion | unfilem2 | |- F : B -1-1-onto-> ( ( A +o B ) \ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfilem1.1 | |- A e. _om |
|
| 2 | unfilem1.2 | |- B e. _om |
|
| 3 | unfilem1.3 | |- F = ( x e. B |-> ( A +o x ) ) |
|
| 4 | ovex | |- ( A +o x ) e. _V |
|
| 5 | 4 3 | fnmpti | |- F Fn B |
| 6 | 1 2 3 | unfilem1 | |- ran F = ( ( A +o B ) \ A ) |
| 7 | df-fo | |- ( F : B -onto-> ( ( A +o B ) \ A ) <-> ( F Fn B /\ ran F = ( ( A +o B ) \ A ) ) ) |
|
| 8 | 5 6 7 | mpbir2an | |- F : B -onto-> ( ( A +o B ) \ A ) |
| 9 | fof | |- ( F : B -onto-> ( ( A +o B ) \ A ) -> F : B --> ( ( A +o B ) \ A ) ) |
|
| 10 | 8 9 | ax-mp | |- F : B --> ( ( A +o B ) \ A ) |
| 11 | oveq2 | |- ( x = z -> ( A +o x ) = ( A +o z ) ) |
|
| 12 | ovex | |- ( A +o z ) e. _V |
|
| 13 | 11 3 12 | fvmpt | |- ( z e. B -> ( F ` z ) = ( A +o z ) ) |
| 14 | oveq2 | |- ( x = w -> ( A +o x ) = ( A +o w ) ) |
|
| 15 | ovex | |- ( A +o w ) e. _V |
|
| 16 | 14 3 15 | fvmpt | |- ( w e. B -> ( F ` w ) = ( A +o w ) ) |
| 17 | 13 16 | eqeqan12d | |- ( ( z e. B /\ w e. B ) -> ( ( F ` z ) = ( F ` w ) <-> ( A +o z ) = ( A +o w ) ) ) |
| 18 | elnn | |- ( ( z e. B /\ B e. _om ) -> z e. _om ) |
|
| 19 | 2 18 | mpan2 | |- ( z e. B -> z e. _om ) |
| 20 | elnn | |- ( ( w e. B /\ B e. _om ) -> w e. _om ) |
|
| 21 | 2 20 | mpan2 | |- ( w e. B -> w e. _om ) |
| 22 | nnacan | |- ( ( A e. _om /\ z e. _om /\ w e. _om ) -> ( ( A +o z ) = ( A +o w ) <-> z = w ) ) |
|
| 23 | 1 19 21 22 | mp3an3an | |- ( ( z e. B /\ w e. B ) -> ( ( A +o z ) = ( A +o w ) <-> z = w ) ) |
| 24 | 17 23 | bitrd | |- ( ( z e. B /\ w e. B ) -> ( ( F ` z ) = ( F ` w ) <-> z = w ) ) |
| 25 | 24 | biimpd | |- ( ( z e. B /\ w e. B ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) |
| 26 | 25 | rgen2 | |- A. z e. B A. w e. B ( ( F ` z ) = ( F ` w ) -> z = w ) |
| 27 | dff13 | |- ( F : B -1-1-> ( ( A +o B ) \ A ) <-> ( F : B --> ( ( A +o B ) \ A ) /\ A. z e. B A. w e. B ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
|
| 28 | 10 26 27 | mpbir2an | |- F : B -1-1-> ( ( A +o B ) \ A ) |
| 29 | df-f1o | |- ( F : B -1-1-onto-> ( ( A +o B ) \ A ) <-> ( F : B -1-1-> ( ( A +o B ) \ A ) /\ F : B -onto-> ( ( A +o B ) \ A ) ) ) |
|
| 30 | 28 8 29 | mpbir2an | |- F : B -1-1-onto-> ( ( A +o B ) \ A ) |