This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 16-Nov-2002) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unfilem3 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐵 ≈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) → ( 𝐴 +o 𝐵 ) = ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ) | |
| 2 | id | ⊢ ( 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) → 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) | |
| 3 | 1 2 | difeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) → ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) = ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ) |
| 4 | 3 | breq2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) → ( 𝐵 ≈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ↔ 𝐵 ≈ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ) ) |
| 5 | id | ⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) | |
| 6 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) = ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) | |
| 7 | 6 | difeq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) = ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ) |
| 8 | 5 7 | breq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → ( 𝐵 ≈ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ↔ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ≈ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ) ) |
| 9 | peano1 | ⊢ ∅ ∈ ω | |
| 10 | 9 | elimel | ⊢ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ∈ ω |
| 11 | ovex | ⊢ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∈ V | |
| 12 | 11 | difexi | ⊢ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ∈ V |
| 13 | 9 | elimel | ⊢ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ∈ ω |
| 14 | eqid | ⊢ ( 𝑥 ∈ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ↦ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝑥 ) ) = ( 𝑥 ∈ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ↦ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝑥 ) ) | |
| 15 | 13 10 14 | unfilem2 | ⊢ ( 𝑥 ∈ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ↦ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝑥 ) ) : if ( 𝐵 ∈ ω , 𝐵 , ∅ ) –1-1-onto→ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) |
| 16 | f1oen2g | ⊢ ( ( if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ∈ ω ∧ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ∈ V ∧ ( 𝑥 ∈ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ↦ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝑥 ) ) : if ( 𝐵 ∈ ω , 𝐵 , ∅ ) –1-1-onto→ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ) → if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ≈ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) ) | |
| 17 | 10 12 15 16 | mp3an | ⊢ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ≈ ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ∖ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ) |
| 18 | 4 8 17 | dedth2h | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐵 ≈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) |