This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If S is closed under multiplication, then so is S u. { 0 } . (Contributed by Mario Carneiro, 17-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | un0addcl.1 | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| un0addcl.2 | ⊢ 𝑇 = ( 𝑆 ∪ { 0 } ) | ||
| un0mulcl.3 | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆 ) ) → ( 𝑀 · 𝑁 ) ∈ 𝑆 ) | ||
| Assertion | un0mulcl | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un0addcl.1 | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| 2 | un0addcl.2 | ⊢ 𝑇 = ( 𝑆 ∪ { 0 } ) | |
| 3 | un0mulcl.3 | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆 ) ) → ( 𝑀 · 𝑁 ) ∈ 𝑆 ) | |
| 4 | 2 | eleq2i | ⊢ ( 𝑁 ∈ 𝑇 ↔ 𝑁 ∈ ( 𝑆 ∪ { 0 } ) ) |
| 5 | elun | ⊢ ( 𝑁 ∈ ( 𝑆 ∪ { 0 } ) ↔ ( 𝑁 ∈ 𝑆 ∨ 𝑁 ∈ { 0 } ) ) | |
| 6 | 4 5 | bitri | ⊢ ( 𝑁 ∈ 𝑇 ↔ ( 𝑁 ∈ 𝑆 ∨ 𝑁 ∈ { 0 } ) ) |
| 7 | 2 | eleq2i | ⊢ ( 𝑀 ∈ 𝑇 ↔ 𝑀 ∈ ( 𝑆 ∪ { 0 } ) ) |
| 8 | elun | ⊢ ( 𝑀 ∈ ( 𝑆 ∪ { 0 } ) ↔ ( 𝑀 ∈ 𝑆 ∨ 𝑀 ∈ { 0 } ) ) | |
| 9 | 7 8 | bitri | ⊢ ( 𝑀 ∈ 𝑇 ↔ ( 𝑀 ∈ 𝑆 ∨ 𝑀 ∈ { 0 } ) ) |
| 10 | ssun1 | ⊢ 𝑆 ⊆ ( 𝑆 ∪ { 0 } ) | |
| 11 | 10 2 | sseqtrri | ⊢ 𝑆 ⊆ 𝑇 |
| 12 | 11 3 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆 ) ) → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) |
| 13 | 12 | expr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑆 ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
| 14 | 1 | sselda | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → 𝑁 ∈ ℂ ) |
| 15 | 14 | mul02d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → ( 0 · 𝑁 ) = 0 ) |
| 16 | ssun2 | ⊢ { 0 } ⊆ ( 𝑆 ∪ { 0 } ) | |
| 17 | 16 2 | sseqtrri | ⊢ { 0 } ⊆ 𝑇 |
| 18 | c0ex | ⊢ 0 ∈ V | |
| 19 | 18 | snss | ⊢ ( 0 ∈ 𝑇 ↔ { 0 } ⊆ 𝑇 ) |
| 20 | 17 19 | mpbir | ⊢ 0 ∈ 𝑇 |
| 21 | 15 20 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → ( 0 · 𝑁 ) ∈ 𝑇 ) |
| 22 | elsni | ⊢ ( 𝑀 ∈ { 0 } → 𝑀 = 0 ) | |
| 23 | 22 | oveq1d | ⊢ ( 𝑀 ∈ { 0 } → ( 𝑀 · 𝑁 ) = ( 0 · 𝑁 ) ) |
| 24 | 23 | eleq1d | ⊢ ( 𝑀 ∈ { 0 } → ( ( 𝑀 · 𝑁 ) ∈ 𝑇 ↔ ( 0 · 𝑁 ) ∈ 𝑇 ) ) |
| 25 | 21 24 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → ( 𝑀 ∈ { 0 } → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
| 26 | 25 | impancom | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ { 0 } ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
| 27 | 13 26 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑆 ∨ 𝑀 ∈ { 0 } ) ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
| 28 | 9 27 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
| 29 | 0cnd | ⊢ ( 𝜑 → 0 ∈ ℂ ) | |
| 30 | 29 | snssd | ⊢ ( 𝜑 → { 0 } ⊆ ℂ ) |
| 31 | 1 30 | unssd | ⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
| 32 | 2 31 | eqsstrid | ⊢ ( 𝜑 → 𝑇 ⊆ ℂ ) |
| 33 | 32 | sselda | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → 𝑀 ∈ ℂ ) |
| 34 | 33 | mul01d | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑀 · 0 ) = 0 ) |
| 35 | 34 20 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑀 · 0 ) ∈ 𝑇 ) |
| 36 | elsni | ⊢ ( 𝑁 ∈ { 0 } → 𝑁 = 0 ) | |
| 37 | 36 | oveq2d | ⊢ ( 𝑁 ∈ { 0 } → ( 𝑀 · 𝑁 ) = ( 𝑀 · 0 ) ) |
| 38 | 37 | eleq1d | ⊢ ( 𝑁 ∈ { 0 } → ( ( 𝑀 · 𝑁 ) ∈ 𝑇 ↔ ( 𝑀 · 0 ) ∈ 𝑇 ) ) |
| 39 | 35 38 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑁 ∈ { 0 } → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
| 40 | 28 39 | jaod | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( ( 𝑁 ∈ 𝑆 ∨ 𝑁 ∈ { 0 } ) → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
| 41 | 6 40 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑁 ∈ 𝑇 → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
| 42 | 41 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) |