This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If S is closed under multiplication, then so is S u. { 0 } . (Contributed by Mario Carneiro, 17-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | un0addcl.1 | |- ( ph -> S C_ CC ) |
|
| un0addcl.2 | |- T = ( S u. { 0 } ) |
||
| un0mulcl.3 | |- ( ( ph /\ ( M e. S /\ N e. S ) ) -> ( M x. N ) e. S ) |
||
| Assertion | un0mulcl | |- ( ( ph /\ ( M e. T /\ N e. T ) ) -> ( M x. N ) e. T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un0addcl.1 | |- ( ph -> S C_ CC ) |
|
| 2 | un0addcl.2 | |- T = ( S u. { 0 } ) |
|
| 3 | un0mulcl.3 | |- ( ( ph /\ ( M e. S /\ N e. S ) ) -> ( M x. N ) e. S ) |
|
| 4 | 2 | eleq2i | |- ( N e. T <-> N e. ( S u. { 0 } ) ) |
| 5 | elun | |- ( N e. ( S u. { 0 } ) <-> ( N e. S \/ N e. { 0 } ) ) |
|
| 6 | 4 5 | bitri | |- ( N e. T <-> ( N e. S \/ N e. { 0 } ) ) |
| 7 | 2 | eleq2i | |- ( M e. T <-> M e. ( S u. { 0 } ) ) |
| 8 | elun | |- ( M e. ( S u. { 0 } ) <-> ( M e. S \/ M e. { 0 } ) ) |
|
| 9 | 7 8 | bitri | |- ( M e. T <-> ( M e. S \/ M e. { 0 } ) ) |
| 10 | ssun1 | |- S C_ ( S u. { 0 } ) |
|
| 11 | 10 2 | sseqtrri | |- S C_ T |
| 12 | 11 3 | sselid | |- ( ( ph /\ ( M e. S /\ N e. S ) ) -> ( M x. N ) e. T ) |
| 13 | 12 | expr | |- ( ( ph /\ M e. S ) -> ( N e. S -> ( M x. N ) e. T ) ) |
| 14 | 1 | sselda | |- ( ( ph /\ N e. S ) -> N e. CC ) |
| 15 | 14 | mul02d | |- ( ( ph /\ N e. S ) -> ( 0 x. N ) = 0 ) |
| 16 | ssun2 | |- { 0 } C_ ( S u. { 0 } ) |
|
| 17 | 16 2 | sseqtrri | |- { 0 } C_ T |
| 18 | c0ex | |- 0 e. _V |
|
| 19 | 18 | snss | |- ( 0 e. T <-> { 0 } C_ T ) |
| 20 | 17 19 | mpbir | |- 0 e. T |
| 21 | 15 20 | eqeltrdi | |- ( ( ph /\ N e. S ) -> ( 0 x. N ) e. T ) |
| 22 | elsni | |- ( M e. { 0 } -> M = 0 ) |
|
| 23 | 22 | oveq1d | |- ( M e. { 0 } -> ( M x. N ) = ( 0 x. N ) ) |
| 24 | 23 | eleq1d | |- ( M e. { 0 } -> ( ( M x. N ) e. T <-> ( 0 x. N ) e. T ) ) |
| 25 | 21 24 | syl5ibrcom | |- ( ( ph /\ N e. S ) -> ( M e. { 0 } -> ( M x. N ) e. T ) ) |
| 26 | 25 | impancom | |- ( ( ph /\ M e. { 0 } ) -> ( N e. S -> ( M x. N ) e. T ) ) |
| 27 | 13 26 | jaodan | |- ( ( ph /\ ( M e. S \/ M e. { 0 } ) ) -> ( N e. S -> ( M x. N ) e. T ) ) |
| 28 | 9 27 | sylan2b | |- ( ( ph /\ M e. T ) -> ( N e. S -> ( M x. N ) e. T ) ) |
| 29 | 0cnd | |- ( ph -> 0 e. CC ) |
|
| 30 | 29 | snssd | |- ( ph -> { 0 } C_ CC ) |
| 31 | 1 30 | unssd | |- ( ph -> ( S u. { 0 } ) C_ CC ) |
| 32 | 2 31 | eqsstrid | |- ( ph -> T C_ CC ) |
| 33 | 32 | sselda | |- ( ( ph /\ M e. T ) -> M e. CC ) |
| 34 | 33 | mul01d | |- ( ( ph /\ M e. T ) -> ( M x. 0 ) = 0 ) |
| 35 | 34 20 | eqeltrdi | |- ( ( ph /\ M e. T ) -> ( M x. 0 ) e. T ) |
| 36 | elsni | |- ( N e. { 0 } -> N = 0 ) |
|
| 37 | 36 | oveq2d | |- ( N e. { 0 } -> ( M x. N ) = ( M x. 0 ) ) |
| 38 | 37 | eleq1d | |- ( N e. { 0 } -> ( ( M x. N ) e. T <-> ( M x. 0 ) e. T ) ) |
| 39 | 35 38 | syl5ibrcom | |- ( ( ph /\ M e. T ) -> ( N e. { 0 } -> ( M x. N ) e. T ) ) |
| 40 | 28 39 | jaod | |- ( ( ph /\ M e. T ) -> ( ( N e. S \/ N e. { 0 } ) -> ( M x. N ) e. T ) ) |
| 41 | 6 40 | biimtrid | |- ( ( ph /\ M e. T ) -> ( N e. T -> ( M x. N ) e. T ) ) |
| 42 | 41 | impr | |- ( ( ph /\ ( M e. T /\ N e. T ) ) -> ( M x. N ) e. T ) |