This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If S is closed under addition, then so is S u. { 0 } . (Contributed by Mario Carneiro, 17-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | un0addcl.1 | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| un0addcl.2 | ⊢ 𝑇 = ( 𝑆 ∪ { 0 } ) | ||
| un0addcl.3 | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆 ) ) → ( 𝑀 + 𝑁 ) ∈ 𝑆 ) | ||
| Assertion | un0addcl | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un0addcl.1 | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| 2 | un0addcl.2 | ⊢ 𝑇 = ( 𝑆 ∪ { 0 } ) | |
| 3 | un0addcl.3 | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆 ) ) → ( 𝑀 + 𝑁 ) ∈ 𝑆 ) | |
| 4 | 2 | eleq2i | ⊢ ( 𝑁 ∈ 𝑇 ↔ 𝑁 ∈ ( 𝑆 ∪ { 0 } ) ) |
| 5 | elun | ⊢ ( 𝑁 ∈ ( 𝑆 ∪ { 0 } ) ↔ ( 𝑁 ∈ 𝑆 ∨ 𝑁 ∈ { 0 } ) ) | |
| 6 | 4 5 | bitri | ⊢ ( 𝑁 ∈ 𝑇 ↔ ( 𝑁 ∈ 𝑆 ∨ 𝑁 ∈ { 0 } ) ) |
| 7 | 2 | eleq2i | ⊢ ( 𝑀 ∈ 𝑇 ↔ 𝑀 ∈ ( 𝑆 ∪ { 0 } ) ) |
| 8 | elun | ⊢ ( 𝑀 ∈ ( 𝑆 ∪ { 0 } ) ↔ ( 𝑀 ∈ 𝑆 ∨ 𝑀 ∈ { 0 } ) ) | |
| 9 | 7 8 | bitri | ⊢ ( 𝑀 ∈ 𝑇 ↔ ( 𝑀 ∈ 𝑆 ∨ 𝑀 ∈ { 0 } ) ) |
| 10 | ssun1 | ⊢ 𝑆 ⊆ ( 𝑆 ∪ { 0 } ) | |
| 11 | 10 2 | sseqtrri | ⊢ 𝑆 ⊆ 𝑇 |
| 12 | 11 3 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆 ) ) → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) |
| 13 | 12 | expr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑆 ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 14 | 1 | sselda | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → 𝑁 ∈ ℂ ) |
| 15 | 14 | addlidd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → ( 0 + 𝑁 ) = 𝑁 ) |
| 16 | 11 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑇 ) |
| 17 | 16 | sselda | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → 𝑁 ∈ 𝑇 ) |
| 18 | 15 17 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → ( 0 + 𝑁 ) ∈ 𝑇 ) |
| 19 | elsni | ⊢ ( 𝑀 ∈ { 0 } → 𝑀 = 0 ) | |
| 20 | 19 | oveq1d | ⊢ ( 𝑀 ∈ { 0 } → ( 𝑀 + 𝑁 ) = ( 0 + 𝑁 ) ) |
| 21 | 20 | eleq1d | ⊢ ( 𝑀 ∈ { 0 } → ( ( 𝑀 + 𝑁 ) ∈ 𝑇 ↔ ( 0 + 𝑁 ) ∈ 𝑇 ) ) |
| 22 | 18 21 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → ( 𝑀 ∈ { 0 } → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 23 | 22 | impancom | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ { 0 } ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 24 | 13 23 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑆 ∨ 𝑀 ∈ { 0 } ) ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 25 | 9 24 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 26 | 0cnd | ⊢ ( 𝜑 → 0 ∈ ℂ ) | |
| 27 | 26 | snssd | ⊢ ( 𝜑 → { 0 } ⊆ ℂ ) |
| 28 | 1 27 | unssd | ⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
| 29 | 2 28 | eqsstrid | ⊢ ( 𝜑 → 𝑇 ⊆ ℂ ) |
| 30 | 29 | sselda | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → 𝑀 ∈ ℂ ) |
| 31 | 30 | addridd | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑀 + 0 ) = 𝑀 ) |
| 32 | simpr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → 𝑀 ∈ 𝑇 ) | |
| 33 | 31 32 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑀 + 0 ) ∈ 𝑇 ) |
| 34 | elsni | ⊢ ( 𝑁 ∈ { 0 } → 𝑁 = 0 ) | |
| 35 | 34 | oveq2d | ⊢ ( 𝑁 ∈ { 0 } → ( 𝑀 + 𝑁 ) = ( 𝑀 + 0 ) ) |
| 36 | 35 | eleq1d | ⊢ ( 𝑁 ∈ { 0 } → ( ( 𝑀 + 𝑁 ) ∈ 𝑇 ↔ ( 𝑀 + 0 ) ∈ 𝑇 ) ) |
| 37 | 33 36 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑁 ∈ { 0 } → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 38 | 25 37 | jaod | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( ( 𝑁 ∈ 𝑆 ∨ 𝑁 ∈ { 0 } ) → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 39 | 6 38 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑁 ∈ 𝑇 → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 40 | 39 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) |