This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If S is closed under addition, then so is S u. { 0 } . (Contributed by Mario Carneiro, 17-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | un0addcl.1 | |- ( ph -> S C_ CC ) |
|
| un0addcl.2 | |- T = ( S u. { 0 } ) |
||
| un0addcl.3 | |- ( ( ph /\ ( M e. S /\ N e. S ) ) -> ( M + N ) e. S ) |
||
| Assertion | un0addcl | |- ( ( ph /\ ( M e. T /\ N e. T ) ) -> ( M + N ) e. T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un0addcl.1 | |- ( ph -> S C_ CC ) |
|
| 2 | un0addcl.2 | |- T = ( S u. { 0 } ) |
|
| 3 | un0addcl.3 | |- ( ( ph /\ ( M e. S /\ N e. S ) ) -> ( M + N ) e. S ) |
|
| 4 | 2 | eleq2i | |- ( N e. T <-> N e. ( S u. { 0 } ) ) |
| 5 | elun | |- ( N e. ( S u. { 0 } ) <-> ( N e. S \/ N e. { 0 } ) ) |
|
| 6 | 4 5 | bitri | |- ( N e. T <-> ( N e. S \/ N e. { 0 } ) ) |
| 7 | 2 | eleq2i | |- ( M e. T <-> M e. ( S u. { 0 } ) ) |
| 8 | elun | |- ( M e. ( S u. { 0 } ) <-> ( M e. S \/ M e. { 0 } ) ) |
|
| 9 | 7 8 | bitri | |- ( M e. T <-> ( M e. S \/ M e. { 0 } ) ) |
| 10 | ssun1 | |- S C_ ( S u. { 0 } ) |
|
| 11 | 10 2 | sseqtrri | |- S C_ T |
| 12 | 11 3 | sselid | |- ( ( ph /\ ( M e. S /\ N e. S ) ) -> ( M + N ) e. T ) |
| 13 | 12 | expr | |- ( ( ph /\ M e. S ) -> ( N e. S -> ( M + N ) e. T ) ) |
| 14 | 1 | sselda | |- ( ( ph /\ N e. S ) -> N e. CC ) |
| 15 | 14 | addlidd | |- ( ( ph /\ N e. S ) -> ( 0 + N ) = N ) |
| 16 | 11 | a1i | |- ( ph -> S C_ T ) |
| 17 | 16 | sselda | |- ( ( ph /\ N e. S ) -> N e. T ) |
| 18 | 15 17 | eqeltrd | |- ( ( ph /\ N e. S ) -> ( 0 + N ) e. T ) |
| 19 | elsni | |- ( M e. { 0 } -> M = 0 ) |
|
| 20 | 19 | oveq1d | |- ( M e. { 0 } -> ( M + N ) = ( 0 + N ) ) |
| 21 | 20 | eleq1d | |- ( M e. { 0 } -> ( ( M + N ) e. T <-> ( 0 + N ) e. T ) ) |
| 22 | 18 21 | syl5ibrcom | |- ( ( ph /\ N e. S ) -> ( M e. { 0 } -> ( M + N ) e. T ) ) |
| 23 | 22 | impancom | |- ( ( ph /\ M e. { 0 } ) -> ( N e. S -> ( M + N ) e. T ) ) |
| 24 | 13 23 | jaodan | |- ( ( ph /\ ( M e. S \/ M e. { 0 } ) ) -> ( N e. S -> ( M + N ) e. T ) ) |
| 25 | 9 24 | sylan2b | |- ( ( ph /\ M e. T ) -> ( N e. S -> ( M + N ) e. T ) ) |
| 26 | 0cnd | |- ( ph -> 0 e. CC ) |
|
| 27 | 26 | snssd | |- ( ph -> { 0 } C_ CC ) |
| 28 | 1 27 | unssd | |- ( ph -> ( S u. { 0 } ) C_ CC ) |
| 29 | 2 28 | eqsstrid | |- ( ph -> T C_ CC ) |
| 30 | 29 | sselda | |- ( ( ph /\ M e. T ) -> M e. CC ) |
| 31 | 30 | addridd | |- ( ( ph /\ M e. T ) -> ( M + 0 ) = M ) |
| 32 | simpr | |- ( ( ph /\ M e. T ) -> M e. T ) |
|
| 33 | 31 32 | eqeltrd | |- ( ( ph /\ M e. T ) -> ( M + 0 ) e. T ) |
| 34 | elsni | |- ( N e. { 0 } -> N = 0 ) |
|
| 35 | 34 | oveq2d | |- ( N e. { 0 } -> ( M + N ) = ( M + 0 ) ) |
| 36 | 35 | eleq1d | |- ( N e. { 0 } -> ( ( M + N ) e. T <-> ( M + 0 ) e. T ) ) |
| 37 | 33 36 | syl5ibrcom | |- ( ( ph /\ M e. T ) -> ( N e. { 0 } -> ( M + N ) e. T ) ) |
| 38 | 25 37 | jaod | |- ( ( ph /\ M e. T ) -> ( ( N e. S \/ N e. { 0 } ) -> ( M + N ) e. T ) ) |
| 39 | 6 38 | biimtrid | |- ( ( ph /\ M e. T ) -> ( N e. T -> ( M + N ) e. T ) ) |
| 40 | 39 | impr | |- ( ( ph /\ ( M e. T /\ N e. T ) ) -> ( M + N ) e. T ) |