This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for umgrres1 . (Contributed by AV, 27-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrres1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| upgrres1.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| upgrres1.f | ⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } | ||
| Assertion | umgrres1lem | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( I ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | upgrres1.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | upgrres1.f | ⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } | |
| 4 | rnresi | ⊢ ran ( I ↾ 𝐹 ) = 𝐹 | |
| 5 | simpr | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝐸 ) | |
| 6 | 5 | adantr | ⊢ ( ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ∈ 𝐸 ) |
| 7 | umgruhgr | ⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) | |
| 8 | 2 | eleq2i | ⊢ ( 𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 9 | 8 | biimpi | ⊢ ( 𝑒 ∈ 𝐸 → 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 10 | edguhgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) | |
| 11 | elpwi | ⊢ ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → 𝑒 ⊆ ( Vtx ‘ 𝐺 ) ) | |
| 12 | 11 1 | sseqtrrdi | ⊢ ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → 𝑒 ⊆ 𝑉 ) |
| 13 | 10 12 | syl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ⊆ 𝑉 ) |
| 14 | 7 9 13 | syl2an | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ⊆ 𝑉 ) |
| 15 | 14 | ad4ant13 | ⊢ ( ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ⊆ 𝑉 ) |
| 16 | simpr | ⊢ ( ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑁 ∉ 𝑒 ) | |
| 17 | elpwdifsn | ⊢ ( ( 𝑒 ∈ 𝐸 ∧ 𝑒 ⊆ 𝑉 ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) | |
| 18 | 6 15 16 17 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
| 19 | 18 | ex | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
| 20 | 19 | ralrimiva | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑒 ∈ 𝐸 ( 𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
| 21 | rabss | ⊢ ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } ⊆ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ↔ ∀ 𝑒 ∈ 𝐸 ( 𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) | |
| 22 | 20 21 | sylibr | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } ⊆ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
| 23 | 3 22 | eqsstrid | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 ⊆ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
| 24 | elrabi | ⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } → 𝑝 ∈ 𝐸 ) | |
| 25 | 24 2 | eleqtrdi | ⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } → 𝑝 ∈ ( Edg ‘ 𝐺 ) ) |
| 26 | edgumgr | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑝 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑝 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) | |
| 27 | 26 | simprd | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑝 ∈ ( Edg ‘ 𝐺 ) ) → ( ♯ ‘ 𝑝 ) = 2 ) |
| 28 | 27 | ex | ⊢ ( 𝐺 ∈ UMGraph → ( 𝑝 ∈ ( Edg ‘ 𝐺 ) → ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑝 ∈ ( Edg ‘ 𝐺 ) → ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 30 | 25 29 | syl5com | ⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } → ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 31 | 30 3 | eleq2s | ⊢ ( 𝑝 ∈ 𝐹 → ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 32 | 31 | impcom | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑝 ∈ 𝐹 ) → ( ♯ ‘ 𝑝 ) = 2 ) |
| 33 | 23 32 | ssrabdv | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
| 34 | 4 33 | eqsstrid | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( I ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |