This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ulmuni | ⊢ ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) → 𝐺 = 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmcl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) → 𝐺 : 𝑆 ⟶ ℂ ) |
| 3 | 2 | ffnd | ⊢ ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) → 𝐺 Fn 𝑆 ) |
| 4 | ulmcl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 → 𝐻 : 𝑆 ⟶ ℂ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) → 𝐻 : 𝑆 ⟶ ℂ ) |
| 6 | 5 | ffnd | ⊢ ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) → 𝐻 Fn 𝑆 ) |
| 7 | eqid | ⊢ ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑛 ) | |
| 8 | simplr | ⊢ ( ( ( ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℤ ) ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → 𝑛 ∈ ℤ ) | |
| 9 | simpr | ⊢ ( ( ( ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℤ ) ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 10 | simpllr | ⊢ ( ( ( ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℤ ) ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → 𝑥 ∈ 𝑆 ) | |
| 11 | fvex | ⊢ ( ℤ≥ ‘ 𝑛 ) ∈ V | |
| 12 | 11 | mptex | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ∈ V |
| 13 | 12 | a1i | ⊢ ( ( ( ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℤ ) ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ∈ V ) |
| 14 | fveq2 | ⊢ ( 𝑖 = 𝑘 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 15 | 14 | fveq1d | ⊢ ( 𝑖 = 𝑘 → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 16 | eqid | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) = ( 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) | |
| 17 | fvex | ⊢ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ∈ V | |
| 18 | 15 16 17 | fvmpt | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) → ( ( 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 19 | 18 | eqcomd | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) |
| 20 | 19 | adantl | ⊢ ( ( ( ( ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℤ ) ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) |
| 21 | simp-4l | ⊢ ( ( ( ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℤ ) ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | |
| 22 | 7 8 9 10 13 20 21 | ulmclm | ⊢ ( ( ( ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℤ ) ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) |
| 23 | simp-4r | ⊢ ( ( ( ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℤ ) ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) | |
| 24 | 7 8 9 10 13 20 23 | ulmclm | ⊢ ( ( ( ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℤ ) ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ⇝ ( 𝐻 ‘ 𝑥 ) ) |
| 25 | climuni | ⊢ ( ( ( 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ) ⇝ ( 𝐻 ‘ 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) | |
| 26 | 22 24 25 | syl2anc | ⊢ ( ( ( ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℤ ) ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) |
| 27 | ulmf | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ∃ 𝑛 ∈ ℤ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 28 | 27 | ad2antrr | ⊢ ( ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) ∧ 𝑥 ∈ 𝑆 ) → ∃ 𝑛 ∈ ℤ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) |
| 29 | 26 28 | r19.29a | ⊢ ( ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) |
| 30 | 3 6 29 | eqfnfvd | ⊢ ( ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐻 ) → 𝐺 = 𝐻 ) |