This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ulmuni | |- ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) -> G = H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmcl | |- ( F ( ~~>u ` S ) G -> G : S --> CC ) |
|
| 2 | 1 | adantr | |- ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) -> G : S --> CC ) |
| 3 | 2 | ffnd | |- ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) -> G Fn S ) |
| 4 | ulmcl | |- ( F ( ~~>u ` S ) H -> H : S --> CC ) |
|
| 5 | 4 | adantl | |- ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) -> H : S --> CC ) |
| 6 | 5 | ffnd | |- ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) -> H Fn S ) |
| 7 | eqid | |- ( ZZ>= ` n ) = ( ZZ>= ` n ) |
|
| 8 | simplr | |- ( ( ( ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) /\ x e. S ) /\ n e. ZZ ) /\ F : ( ZZ>= ` n ) --> ( CC ^m S ) ) -> n e. ZZ ) |
|
| 9 | simpr | |- ( ( ( ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) /\ x e. S ) /\ n e. ZZ ) /\ F : ( ZZ>= ` n ) --> ( CC ^m S ) ) -> F : ( ZZ>= ` n ) --> ( CC ^m S ) ) |
|
| 10 | simpllr | |- ( ( ( ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) /\ x e. S ) /\ n e. ZZ ) /\ F : ( ZZ>= ` n ) --> ( CC ^m S ) ) -> x e. S ) |
|
| 11 | fvex | |- ( ZZ>= ` n ) e. _V |
|
| 12 | 11 | mptex | |- ( i e. ( ZZ>= ` n ) |-> ( ( F ` i ) ` x ) ) e. _V |
| 13 | 12 | a1i | |- ( ( ( ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) /\ x e. S ) /\ n e. ZZ ) /\ F : ( ZZ>= ` n ) --> ( CC ^m S ) ) -> ( i e. ( ZZ>= ` n ) |-> ( ( F ` i ) ` x ) ) e. _V ) |
| 14 | fveq2 | |- ( i = k -> ( F ` i ) = ( F ` k ) ) |
|
| 15 | 14 | fveq1d | |- ( i = k -> ( ( F ` i ) ` x ) = ( ( F ` k ) ` x ) ) |
| 16 | eqid | |- ( i e. ( ZZ>= ` n ) |-> ( ( F ` i ) ` x ) ) = ( i e. ( ZZ>= ` n ) |-> ( ( F ` i ) ` x ) ) |
|
| 17 | fvex | |- ( ( F ` k ) ` x ) e. _V |
|
| 18 | 15 16 17 | fvmpt | |- ( k e. ( ZZ>= ` n ) -> ( ( i e. ( ZZ>= ` n ) |-> ( ( F ` i ) ` x ) ) ` k ) = ( ( F ` k ) ` x ) ) |
| 19 | 18 | eqcomd | |- ( k e. ( ZZ>= ` n ) -> ( ( F ` k ) ` x ) = ( ( i e. ( ZZ>= ` n ) |-> ( ( F ` i ) ` x ) ) ` k ) ) |
| 20 | 19 | adantl | |- ( ( ( ( ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) /\ x e. S ) /\ n e. ZZ ) /\ F : ( ZZ>= ` n ) --> ( CC ^m S ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( F ` k ) ` x ) = ( ( i e. ( ZZ>= ` n ) |-> ( ( F ` i ) ` x ) ) ` k ) ) |
| 21 | simp-4l | |- ( ( ( ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) /\ x e. S ) /\ n e. ZZ ) /\ F : ( ZZ>= ` n ) --> ( CC ^m S ) ) -> F ( ~~>u ` S ) G ) |
|
| 22 | 7 8 9 10 13 20 21 | ulmclm | |- ( ( ( ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) /\ x e. S ) /\ n e. ZZ ) /\ F : ( ZZ>= ` n ) --> ( CC ^m S ) ) -> ( i e. ( ZZ>= ` n ) |-> ( ( F ` i ) ` x ) ) ~~> ( G ` x ) ) |
| 23 | simp-4r | |- ( ( ( ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) /\ x e. S ) /\ n e. ZZ ) /\ F : ( ZZ>= ` n ) --> ( CC ^m S ) ) -> F ( ~~>u ` S ) H ) |
|
| 24 | 7 8 9 10 13 20 23 | ulmclm | |- ( ( ( ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) /\ x e. S ) /\ n e. ZZ ) /\ F : ( ZZ>= ` n ) --> ( CC ^m S ) ) -> ( i e. ( ZZ>= ` n ) |-> ( ( F ` i ) ` x ) ) ~~> ( H ` x ) ) |
| 25 | climuni | |- ( ( ( i e. ( ZZ>= ` n ) |-> ( ( F ` i ) ` x ) ) ~~> ( G ` x ) /\ ( i e. ( ZZ>= ` n ) |-> ( ( F ` i ) ` x ) ) ~~> ( H ` x ) ) -> ( G ` x ) = ( H ` x ) ) |
|
| 26 | 22 24 25 | syl2anc | |- ( ( ( ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) /\ x e. S ) /\ n e. ZZ ) /\ F : ( ZZ>= ` n ) --> ( CC ^m S ) ) -> ( G ` x ) = ( H ` x ) ) |
| 27 | ulmf | |- ( F ( ~~>u ` S ) G -> E. n e. ZZ F : ( ZZ>= ` n ) --> ( CC ^m S ) ) |
|
| 28 | 27 | ad2antrr | |- ( ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) /\ x e. S ) -> E. n e. ZZ F : ( ZZ>= ` n ) --> ( CC ^m S ) ) |
| 29 | 26 28 | r19.29a | |- ( ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) /\ x e. S ) -> ( G ` x ) = ( H ` x ) ) |
| 30 | 3 6 29 | eqfnfvd | |- ( ( F ( ~~>u ` S ) G /\ F ( ~~>u ` S ) H ) -> G = H ) |