This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulm0.z | |- Z = ( ZZ>= ` M ) |
|
| ulm0.m | |- ( ph -> M e. ZZ ) |
||
| ulm0.f | |- ( ph -> F : Z --> ( CC ^m S ) ) |
||
| ulm0.g | |- ( ph -> G : S --> CC ) |
||
| Assertion | ulm0 | |- ( ( ph /\ S = (/) ) -> F ( ~~>u ` S ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulm0.z | |- Z = ( ZZ>= ` M ) |
|
| 2 | ulm0.m | |- ( ph -> M e. ZZ ) |
|
| 3 | ulm0.f | |- ( ph -> F : Z --> ( CC ^m S ) ) |
|
| 4 | ulm0.g | |- ( ph -> G : S --> CC ) |
|
| 5 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 6 | 2 5 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 7 | 6 1 | eleqtrrdi | |- ( ph -> M e. Z ) |
| 8 | 7 | ne0d | |- ( ph -> Z =/= (/) ) |
| 9 | ral0 | |- A. z e. (/) ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x |
|
| 10 | simpr | |- ( ( ph /\ S = (/) ) -> S = (/) ) |
|
| 11 | 10 | raleqdv | |- ( ( ph /\ S = (/) ) -> ( A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x <-> A. z e. (/) ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) ) |
| 12 | 9 11 | mpbiri | |- ( ( ph /\ S = (/) ) -> A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) |
| 13 | 12 | ralrimivw | |- ( ( ph /\ S = (/) ) -> A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) |
| 14 | 13 | ralrimivw | |- ( ( ph /\ S = (/) ) -> A. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) |
| 15 | r19.2z | |- ( ( Z =/= (/) /\ A. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) -> E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) |
|
| 16 | 8 14 15 | syl2an2r | |- ( ( ph /\ S = (/) ) -> E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) |
| 17 | 16 | ralrimivw | |- ( ( ph /\ S = (/) ) -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) |
| 18 | 2 | adantr | |- ( ( ph /\ S = (/) ) -> M e. ZZ ) |
| 19 | 3 | adantr | |- ( ( ph /\ S = (/) ) -> F : Z --> ( CC ^m S ) ) |
| 20 | eqidd | |- ( ( ( ph /\ S = (/) ) /\ ( k e. Z /\ z e. S ) ) -> ( ( F ` k ) ` z ) = ( ( F ` k ) ` z ) ) |
|
| 21 | eqidd | |- ( ( ( ph /\ S = (/) ) /\ z e. S ) -> ( G ` z ) = ( G ` z ) ) |
|
| 22 | 4 | adantr | |- ( ( ph /\ S = (/) ) -> G : S --> CC ) |
| 23 | 0ex | |- (/) e. _V |
|
| 24 | 10 23 | eqeltrdi | |- ( ( ph /\ S = (/) ) -> S e. _V ) |
| 25 | 1 18 19 20 21 22 24 | ulm2 | |- ( ( ph /\ S = (/) ) -> ( F ( ~~>u ` S ) G <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) ) |
| 26 | 17 25 | mpbird | |- ( ( ph /\ S = (/) ) -> F ( ~~>u ` S ) G ) |