This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism between hypergraphs is a bijection between their vertices that preserves adjacency for simple edges, i.e. there is a simple edge in one graph connecting one or two vertices iff there is a simple edge in the other graph connecting the vertices which are the images of the vertices. (Contributed by AV, 27-Apr-2025) (Revised by AV, 25-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrimedgi.e | |- E = ( Edg ` G ) |
|
| uhgrimedgi.d | |- D = ( Edg ` H ) |
||
| uhgrimprop.v | |- V = ( Vtx ` G ) |
||
| uhgrimprop.w | |- W = ( Vtx ` H ) |
||
| Assertion | uhgrimprop | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( F : V -1-1-onto-> W /\ A. x e. V A. y e. V ( { x , y } e. E <-> { ( F ` x ) , ( F ` y ) } e. D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrimedgi.e | |- E = ( Edg ` G ) |
|
| 2 | uhgrimedgi.d | |- D = ( Edg ` H ) |
|
| 3 | uhgrimprop.v | |- V = ( Vtx ` G ) |
|
| 4 | uhgrimprop.w | |- W = ( Vtx ` H ) |
|
| 5 | 3 4 | grimf1o | |- ( F e. ( G GraphIso H ) -> F : V -1-1-onto-> W ) |
| 6 | 5 | 3ad2ant3 | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> F : V -1-1-onto-> W ) |
| 7 | 3simpa | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( G e. UHGraph /\ H e. UHGraph ) ) |
|
| 8 | simp3 | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> F e. ( G GraphIso H ) ) |
|
| 9 | prssi | |- ( ( x e. V /\ y e. V ) -> { x , y } C_ V ) |
|
| 10 | 9 3 | sseqtrdi | |- ( ( x e. V /\ y e. V ) -> { x , y } C_ ( Vtx ` G ) ) |
| 11 | 1 2 | uhgrimedg | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ { x , y } C_ ( Vtx ` G ) ) -> ( { x , y } e. E <-> ( F " { x , y } ) e. D ) ) |
| 12 | 7 8 10 11 | syl2an3an | |- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ ( x e. V /\ y e. V ) ) -> ( { x , y } e. E <-> ( F " { x , y } ) e. D ) ) |
| 13 | f1ofn | |- ( F : V -1-1-onto-> W -> F Fn V ) |
|
| 14 | 5 13 | syl | |- ( F e. ( G GraphIso H ) -> F Fn V ) |
| 15 | 14 | 3ad2ant3 | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> F Fn V ) |
| 16 | 15 | anim1i | |- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ ( x e. V /\ y e. V ) ) -> ( F Fn V /\ ( x e. V /\ y e. V ) ) ) |
| 17 | 3anass | |- ( ( F Fn V /\ x e. V /\ y e. V ) <-> ( F Fn V /\ ( x e. V /\ y e. V ) ) ) |
|
| 18 | 16 17 | sylibr | |- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ ( x e. V /\ y e. V ) ) -> ( F Fn V /\ x e. V /\ y e. V ) ) |
| 19 | fnimapr | |- ( ( F Fn V /\ x e. V /\ y e. V ) -> ( F " { x , y } ) = { ( F ` x ) , ( F ` y ) } ) |
|
| 20 | 18 19 | syl | |- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ ( x e. V /\ y e. V ) ) -> ( F " { x , y } ) = { ( F ` x ) , ( F ` y ) } ) |
| 21 | 20 | eleq1d | |- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ ( x e. V /\ y e. V ) ) -> ( ( F " { x , y } ) e. D <-> { ( F ` x ) , ( F ` y ) } e. D ) ) |
| 22 | 12 21 | bitrd | |- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ ( x e. V /\ y e. V ) ) -> ( { x , y } e. E <-> { ( F ` x ) , ( F ` y ) } e. D ) ) |
| 23 | 22 | ralrimivva | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> A. x e. V A. y e. V ( { x , y } e. E <-> { ( F ` x ) , ( F ` y ) } e. D ) ) |
| 24 | 6 23 | jca | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( F : V -1-1-onto-> W /\ A. x e. V A. y e. V ( { x , y } e. E <-> { ( F ` x ) , ( F ` y ) } e. D ) ) ) |