This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer in a 1-based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018) (Revised by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ubmelfzo | ⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝑁 − 𝐾 ) ∈ ( 0 ..^ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) → 𝐾 ≤ 𝑁 ) | |
| 2 | nnnn0 | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ0 ) | |
| 3 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 4 | 2 3 | anim12i | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) → ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) |
| 6 | nn0sub | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐾 ≤ 𝑁 ↔ ( 𝑁 − 𝐾 ) ∈ ℕ0 ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) → ( 𝐾 ≤ 𝑁 ↔ ( 𝑁 − 𝐾 ) ∈ ℕ0 ) ) |
| 8 | 1 7 | mpbid | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) → ( 𝑁 − 𝐾 ) ∈ ℕ0 ) |
| 9 | simp2 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) → 𝑁 ∈ ℕ ) | |
| 10 | nngt0 | ⊢ ( 𝐾 ∈ ℕ → 0 < 𝐾 ) | |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) → 0 < 𝐾 ) |
| 12 | nnre | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ ) | |
| 13 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 14 | 12 13 | anim12i | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) → ( 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 16 | ltsubpos | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 < 𝐾 ↔ ( 𝑁 − 𝐾 ) < 𝑁 ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) → ( 0 < 𝐾 ↔ ( 𝑁 − 𝐾 ) < 𝑁 ) ) |
| 18 | 11 17 | mpbid | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) → ( 𝑁 − 𝐾 ) < 𝑁 ) |
| 19 | 8 9 18 | 3jca | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) → ( ( 𝑁 − 𝐾 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ ( 𝑁 − 𝐾 ) < 𝑁 ) ) |
| 20 | elfz1b | ⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) ) | |
| 21 | elfzo0 | ⊢ ( ( 𝑁 − 𝐾 ) ∈ ( 0 ..^ 𝑁 ) ↔ ( ( 𝑁 − 𝐾 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ ( 𝑁 − 𝐾 ) < 𝑁 ) ) | |
| 22 | 19 20 21 | 3imtr4i | ⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝑁 − 𝐾 ) ∈ ( 0 ..^ 𝑁 ) ) |