This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqreznegel | ⊢ ( 𝐴 ⊆ ℤ → { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } = { 𝑧 ∈ ℤ ∣ - 𝑧 ∈ 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐴 ⊆ ℤ → ( - 𝑤 ∈ 𝐴 → - 𝑤 ∈ ℤ ) ) | |
| 2 | recn | ⊢ ( 𝑤 ∈ ℝ → 𝑤 ∈ ℂ ) | |
| 3 | negid | ⊢ ( 𝑤 ∈ ℂ → ( 𝑤 + - 𝑤 ) = 0 ) | |
| 4 | 0z | ⊢ 0 ∈ ℤ | |
| 5 | 3 4 | eqeltrdi | ⊢ ( 𝑤 ∈ ℂ → ( 𝑤 + - 𝑤 ) ∈ ℤ ) |
| 6 | 5 | pm4.71i | ⊢ ( 𝑤 ∈ ℂ ↔ ( 𝑤 ∈ ℂ ∧ ( 𝑤 + - 𝑤 ) ∈ ℤ ) ) |
| 7 | zrevaddcl | ⊢ ( - 𝑤 ∈ ℤ → ( ( 𝑤 ∈ ℂ ∧ ( 𝑤 + - 𝑤 ) ∈ ℤ ) ↔ 𝑤 ∈ ℤ ) ) | |
| 8 | 6 7 | bitrid | ⊢ ( - 𝑤 ∈ ℤ → ( 𝑤 ∈ ℂ ↔ 𝑤 ∈ ℤ ) ) |
| 9 | 2 8 | imbitrid | ⊢ ( - 𝑤 ∈ ℤ → ( 𝑤 ∈ ℝ → 𝑤 ∈ ℤ ) ) |
| 10 | 1 9 | syl6 | ⊢ ( 𝐴 ⊆ ℤ → ( - 𝑤 ∈ 𝐴 → ( 𝑤 ∈ ℝ → 𝑤 ∈ ℤ ) ) ) |
| 11 | 10 | impcomd | ⊢ ( 𝐴 ⊆ ℤ → ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℤ ) ) |
| 12 | simpr | ⊢ ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) → - 𝑤 ∈ 𝐴 ) | |
| 13 | 11 12 | jca2 | ⊢ ( 𝐴 ⊆ ℤ → ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) ) ) |
| 14 | zre | ⊢ ( 𝑤 ∈ ℤ → 𝑤 ∈ ℝ ) | |
| 15 | 14 | anim1i | ⊢ ( ( 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) ) |
| 16 | 13 15 | impbid1 | ⊢ ( 𝐴 ⊆ ℤ → ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) ↔ ( 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) ) ) |
| 17 | negeq | ⊢ ( 𝑧 = 𝑤 → - 𝑧 = - 𝑤 ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑧 = 𝑤 → ( - 𝑧 ∈ 𝐴 ↔ - 𝑤 ∈ 𝐴 ) ) |
| 19 | 18 | elrab | ⊢ ( 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) ) |
| 20 | 18 | elrab | ⊢ ( 𝑤 ∈ { 𝑧 ∈ ℤ ∣ - 𝑧 ∈ 𝐴 } ↔ ( 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) ) |
| 21 | 16 19 20 | 3bitr4g | ⊢ ( 𝐴 ⊆ ℤ → ( 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ 𝑤 ∈ { 𝑧 ∈ ℤ ∣ - 𝑧 ∈ 𝐴 } ) ) |
| 22 | 21 | eqrdv | ⊢ ( 𝐴 ⊆ ℤ → { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } = { 𝑧 ∈ ℤ ∣ - 𝑧 ∈ 𝐴 } ) |