This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological product of two nonempty topologies is compact iff the component topologies are both compact. (Contributed by Mario Carneiro, 14-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txcmpb.1 | |- X = U. R |
|
| txcmpb.2 | |- Y = U. S |
||
| Assertion | txcmpb | |- ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( ( R tX S ) e. Comp <-> ( R e. Comp /\ S e. Comp ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txcmpb.1 | |- X = U. R |
|
| 2 | txcmpb.2 | |- Y = U. S |
|
| 3 | simpr | |- ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( R tX S ) e. Comp ) |
|
| 4 | simplrr | |- ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> Y =/= (/) ) |
|
| 5 | fo1stres | |- ( Y =/= (/) -> ( 1st |` ( X X. Y ) ) : ( X X. Y ) -onto-> X ) |
|
| 6 | 4 5 | syl | |- ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( 1st |` ( X X. Y ) ) : ( X X. Y ) -onto-> X ) |
| 7 | 1 2 | txuni | |- ( ( R e. Top /\ S e. Top ) -> ( X X. Y ) = U. ( R tX S ) ) |
| 8 | 7 | ad2antrr | |- ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( X X. Y ) = U. ( R tX S ) ) |
| 9 | foeq2 | |- ( ( X X. Y ) = U. ( R tX S ) -> ( ( 1st |` ( X X. Y ) ) : ( X X. Y ) -onto-> X <-> ( 1st |` ( X X. Y ) ) : U. ( R tX S ) -onto-> X ) ) |
|
| 10 | 8 9 | syl | |- ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( ( 1st |` ( X X. Y ) ) : ( X X. Y ) -onto-> X <-> ( 1st |` ( X X. Y ) ) : U. ( R tX S ) -onto-> X ) ) |
| 11 | 6 10 | mpbid | |- ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( 1st |` ( X X. Y ) ) : U. ( R tX S ) -onto-> X ) |
| 12 | 1 | toptopon | |- ( R e. Top <-> R e. ( TopOn ` X ) ) |
| 13 | 2 | toptopon | |- ( S e. Top <-> S e. ( TopOn ` Y ) ) |
| 14 | tx1cn | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) ) |
|
| 15 | 12 13 14 | syl2anb | |- ( ( R e. Top /\ S e. Top ) -> ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) ) |
| 16 | 15 | ad2antrr | |- ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) ) |
| 17 | 1 | cncmp | |- ( ( ( R tX S ) e. Comp /\ ( 1st |` ( X X. Y ) ) : U. ( R tX S ) -onto-> X /\ ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) ) -> R e. Comp ) |
| 18 | 3 11 16 17 | syl3anc | |- ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> R e. Comp ) |
| 19 | simplrl | |- ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> X =/= (/) ) |
|
| 20 | fo2ndres | |- ( X =/= (/) -> ( 2nd |` ( X X. Y ) ) : ( X X. Y ) -onto-> Y ) |
|
| 21 | 19 20 | syl | |- ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( 2nd |` ( X X. Y ) ) : ( X X. Y ) -onto-> Y ) |
| 22 | foeq2 | |- ( ( X X. Y ) = U. ( R tX S ) -> ( ( 2nd |` ( X X. Y ) ) : ( X X. Y ) -onto-> Y <-> ( 2nd |` ( X X. Y ) ) : U. ( R tX S ) -onto-> Y ) ) |
|
| 23 | 8 22 | syl | |- ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( ( 2nd |` ( X X. Y ) ) : ( X X. Y ) -onto-> Y <-> ( 2nd |` ( X X. Y ) ) : U. ( R tX S ) -onto-> Y ) ) |
| 24 | 21 23 | mpbid | |- ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( 2nd |` ( X X. Y ) ) : U. ( R tX S ) -onto-> Y ) |
| 25 | tx2cn | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( 2nd |` ( X X. Y ) ) e. ( ( R tX S ) Cn S ) ) |
|
| 26 | 12 13 25 | syl2anb | |- ( ( R e. Top /\ S e. Top ) -> ( 2nd |` ( X X. Y ) ) e. ( ( R tX S ) Cn S ) ) |
| 27 | 26 | ad2antrr | |- ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( 2nd |` ( X X. Y ) ) e. ( ( R tX S ) Cn S ) ) |
| 28 | 2 | cncmp | |- ( ( ( R tX S ) e. Comp /\ ( 2nd |` ( X X. Y ) ) : U. ( R tX S ) -onto-> Y /\ ( 2nd |` ( X X. Y ) ) e. ( ( R tX S ) Cn S ) ) -> S e. Comp ) |
| 29 | 3 24 27 28 | syl3anc | |- ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> S e. Comp ) |
| 30 | 18 29 | jca | |- ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( R e. Comp /\ S e. Comp ) ) |
| 31 | 30 | ex | |- ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( ( R tX S ) e. Comp -> ( R e. Comp /\ S e. Comp ) ) ) |
| 32 | txcmp | |- ( ( R e. Comp /\ S e. Comp ) -> ( R tX S ) e. Comp ) |
|
| 33 | 31 32 | impbid1 | |- ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( ( R tX S ) e. Comp <-> ( R e. Comp /\ S e. Comp ) ) ) |