This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constructed uniform space is an uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tuslem.k | |- K = ( toUnifSp ` U ) |
|
| Assertion | tususp | |- ( U e. ( UnifOn ` X ) -> K e. UnifSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tuslem.k | |- K = ( toUnifSp ` U ) |
|
| 2 | id | |- ( U e. ( UnifOn ` X ) -> U e. ( UnifOn ` X ) ) |
|
| 3 | 1 | tususs | |- ( U e. ( UnifOn ` X ) -> U = ( UnifSt ` K ) ) |
| 4 | 1 | tusbas | |- ( U e. ( UnifOn ` X ) -> X = ( Base ` K ) ) |
| 5 | 4 | fveq2d | |- ( U e. ( UnifOn ` X ) -> ( UnifOn ` X ) = ( UnifOn ` ( Base ` K ) ) ) |
| 6 | 2 3 5 | 3eltr3d | |- ( U e. ( UnifOn ` X ) -> ( UnifSt ` K ) e. ( UnifOn ` ( Base ` K ) ) ) |
| 7 | 1 | tusunif | |- ( U e. ( UnifOn ` X ) -> U = ( UnifSet ` K ) ) |
| 8 | 7 | fveq2d | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = ( unifTop ` ( UnifSet ` K ) ) ) |
| 9 | 1 | tuslem | |- ( U e. ( UnifOn ` X ) -> ( X = ( Base ` K ) /\ U = ( UnifSet ` K ) /\ ( unifTop ` U ) = ( TopOpen ` K ) ) ) |
| 10 | 9 | simp3d | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = ( TopOpen ` K ) ) |
| 11 | 7 3 | eqtr3d | |- ( U e. ( UnifOn ` X ) -> ( UnifSet ` K ) = ( UnifSt ` K ) ) |
| 12 | 11 | fveq2d | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` ( UnifSet ` K ) ) = ( unifTop ` ( UnifSt ` K ) ) ) |
| 13 | 8 10 12 | 3eqtr3d | |- ( U e. ( UnifOn ` X ) -> ( TopOpen ` K ) = ( unifTop ` ( UnifSt ` K ) ) ) |
| 14 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 15 | eqid | |- ( UnifSt ` K ) = ( UnifSt ` K ) |
|
| 16 | eqid | |- ( TopOpen ` K ) = ( TopOpen ` K ) |
|
| 17 | 14 15 16 | isusp | |- ( K e. UnifSp <-> ( ( UnifSt ` K ) e. ( UnifOn ` ( Base ` K ) ) /\ ( TopOpen ` K ) = ( unifTop ` ( UnifSt ` K ) ) ) ) |
| 18 | 6 13 17 | sylanbrc | |- ( U e. ( UnifOn ` X ) -> K e. UnifSp ) |