This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constructed uniform space is a topological space. (Contributed by Thierry Arnoux, 25-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tuslem.k | ⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) | |
| Assertion | tustps | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐾 ∈ TopSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tuslem.k | ⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) | |
| 2 | utoptopon | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | eqid | ⊢ ( unifTop ‘ 𝑈 ) = ( unifTop ‘ 𝑈 ) | |
| 4 | 1 3 | tustopn | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) |
| 5 | 1 | tusbas | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
| 6 | 5 | fveq2d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( TopOn ‘ 𝑋 ) = ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 7 | 2 4 6 | 3eltr3d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 8 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 9 | eqid | ⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) | |
| 10 | 8 9 | istps | ⊢ ( 𝐾 ∈ TopSp ↔ ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 11 | 7 10 | sylibr | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐾 ∈ TopSp ) |