This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ttrclco | ⊢ ( t++ 𝑅 ∘ 𝑅 ) ⊆ t++ 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | ⊢ Rel ( 𝑅 ↾ V ) | |
| 2 | ssttrcl | ⊢ ( Rel ( 𝑅 ↾ V ) → ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) ) | |
| 3 | coss2 | ⊢ ( ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) → ( t++ ( 𝑅 ↾ V ) ∘ ( 𝑅 ↾ V ) ) ⊆ ( t++ ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) ) | |
| 4 | 1 2 3 | mp2b | ⊢ ( t++ ( 𝑅 ↾ V ) ∘ ( 𝑅 ↾ V ) ) ⊆ ( t++ ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) |
| 5 | ttrcltr | ⊢ ( t++ ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) ⊆ t++ ( 𝑅 ↾ V ) | |
| 6 | 4 5 | sstri | ⊢ ( t++ ( 𝑅 ↾ V ) ∘ ( 𝑅 ↾ V ) ) ⊆ t++ ( 𝑅 ↾ V ) |
| 7 | relco | ⊢ Rel ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) | |
| 8 | dfrel3 | ⊢ ( Rel ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) ↔ ( ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) ↾ V ) = ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) ) | |
| 9 | 7 8 | mpbi | ⊢ ( ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) ↾ V ) = ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) |
| 10 | resco | ⊢ ( ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) ↾ V ) = ( t++ ( 𝑅 ↾ V ) ∘ ( 𝑅 ↾ V ) ) | |
| 11 | ttrclresv | ⊢ t++ ( 𝑅 ↾ V ) = t++ 𝑅 | |
| 12 | 11 | coeq1i | ⊢ ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) = ( t++ 𝑅 ∘ 𝑅 ) |
| 13 | 9 10 12 | 3eqtr3i | ⊢ ( t++ ( 𝑅 ↾ V ) ∘ ( 𝑅 ↾ V ) ) = ( t++ 𝑅 ∘ 𝑅 ) |
| 14 | 6 13 11 | 3sstr3i | ⊢ ( t++ 𝑅 ∘ 𝑅 ) ⊆ t++ 𝑅 |