This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cottrcl | ⊢ ( 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | ⊢ Rel ( 𝑅 ↾ V ) | |
| 2 | ssttrcl | ⊢ ( Rel ( 𝑅 ↾ V ) → ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) |
| 4 | coss1 | ⊢ ( ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) → ( ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) ⊆ ( t++ ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) ⊆ ( t++ ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) |
| 6 | ttrcltr | ⊢ ( t++ ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) ⊆ t++ ( 𝑅 ↾ V ) | |
| 7 | 5 6 | sstri | ⊢ ( ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) ⊆ t++ ( 𝑅 ↾ V ) |
| 8 | ssv | ⊢ ran t++ ( 𝑅 ↾ V ) ⊆ V | |
| 9 | cores | ⊢ ( ran t++ ( 𝑅 ↾ V ) ⊆ V → ( ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) = ( 𝑅 ∘ t++ ( 𝑅 ↾ V ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) = ( 𝑅 ∘ t++ ( 𝑅 ↾ V ) ) |
| 11 | ttrclresv | ⊢ t++ ( 𝑅 ↾ V ) = t++ 𝑅 | |
| 12 | 11 | coeq2i | ⊢ ( 𝑅 ∘ t++ ( 𝑅 ↾ V ) ) = ( 𝑅 ∘ t++ 𝑅 ) |
| 13 | 10 12 | eqtri | ⊢ ( ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) = ( 𝑅 ∘ t++ 𝑅 ) |
| 14 | 7 13 11 | 3sstr3i | ⊢ ( 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 |