This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ttrclco | |- ( t++ R o. R ) C_ t++ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | |- Rel ( R |` _V ) |
|
| 2 | ssttrcl | |- ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) |
|
| 3 | coss2 | |- ( ( R |` _V ) C_ t++ ( R |` _V ) -> ( t++ ( R |` _V ) o. ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) ) |
|
| 4 | 1 2 3 | mp2b | |- ( t++ ( R |` _V ) o. ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) |
| 5 | ttrcltr | |- ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) C_ t++ ( R |` _V ) |
|
| 6 | 4 5 | sstri | |- ( t++ ( R |` _V ) o. ( R |` _V ) ) C_ t++ ( R |` _V ) |
| 7 | relco | |- Rel ( t++ ( R |` _V ) o. R ) |
|
| 8 | dfrel3 | |- ( Rel ( t++ ( R |` _V ) o. R ) <-> ( ( t++ ( R |` _V ) o. R ) |` _V ) = ( t++ ( R |` _V ) o. R ) ) |
|
| 9 | 7 8 | mpbi | |- ( ( t++ ( R |` _V ) o. R ) |` _V ) = ( t++ ( R |` _V ) o. R ) |
| 10 | resco | |- ( ( t++ ( R |` _V ) o. R ) |` _V ) = ( t++ ( R |` _V ) o. ( R |` _V ) ) |
|
| 11 | ttrclresv | |- t++ ( R |` _V ) = t++ R |
|
| 12 | 11 | coeq1i | |- ( t++ ( R |` _V ) o. R ) = ( t++ R o. R ) |
| 13 | 9 10 12 | 3eqtr3i | |- ( t++ ( R |` _V ) o. ( R |` _V ) ) = ( t++ R o. R ) |
| 14 | 6 13 11 | 3sstr3i | |- ( t++ R o. R ) C_ t++ R |