This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015) (Revised by AV, 24-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsid.b | |- B = ( Base ` G ) |
|
| tsmsid.z | |- .0. = ( 0g ` G ) |
||
| tsmsid.1 | |- ( ph -> G e. CMnd ) |
||
| tsmsid.2 | |- ( ph -> G e. TopSp ) |
||
| tsmsid.a | |- ( ph -> A e. V ) |
||
| tsmsid.f | |- ( ph -> F : A --> B ) |
||
| tsmsid.w | |- ( ph -> F finSupp .0. ) |
||
| Assertion | tsmsid | |- ( ph -> ( G gsum F ) e. ( G tsums F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsid.b | |- B = ( Base ` G ) |
|
| 2 | tsmsid.z | |- .0. = ( 0g ` G ) |
|
| 3 | tsmsid.1 | |- ( ph -> G e. CMnd ) |
|
| 4 | tsmsid.2 | |- ( ph -> G e. TopSp ) |
|
| 5 | tsmsid.a | |- ( ph -> A e. V ) |
|
| 6 | tsmsid.f | |- ( ph -> F : A --> B ) |
|
| 7 | tsmsid.w | |- ( ph -> F finSupp .0. ) |
|
| 8 | eqid | |- ( TopOpen ` G ) = ( TopOpen ` G ) |
|
| 9 | 1 8 | istps | |- ( G e. TopSp <-> ( TopOpen ` G ) e. ( TopOn ` B ) ) |
| 10 | 4 9 | sylib | |- ( ph -> ( TopOpen ` G ) e. ( TopOn ` B ) ) |
| 11 | topontop | |- ( ( TopOpen ` G ) e. ( TopOn ` B ) -> ( TopOpen ` G ) e. Top ) |
|
| 12 | 10 11 | syl | |- ( ph -> ( TopOpen ` G ) e. Top ) |
| 13 | 1 2 3 5 6 7 | gsumcl | |- ( ph -> ( G gsum F ) e. B ) |
| 14 | 13 | snssd | |- ( ph -> { ( G gsum F ) } C_ B ) |
| 15 | toponuni | |- ( ( TopOpen ` G ) e. ( TopOn ` B ) -> B = U. ( TopOpen ` G ) ) |
|
| 16 | 10 15 | syl | |- ( ph -> B = U. ( TopOpen ` G ) ) |
| 17 | 14 16 | sseqtrd | |- ( ph -> { ( G gsum F ) } C_ U. ( TopOpen ` G ) ) |
| 18 | eqid | |- U. ( TopOpen ` G ) = U. ( TopOpen ` G ) |
|
| 19 | 18 | sscls | |- ( ( ( TopOpen ` G ) e. Top /\ { ( G gsum F ) } C_ U. ( TopOpen ` G ) ) -> { ( G gsum F ) } C_ ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) ) |
| 20 | 12 17 19 | syl2anc | |- ( ph -> { ( G gsum F ) } C_ ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) ) |
| 21 | ovex | |- ( G gsum F ) e. _V |
|
| 22 | 21 | snss | |- ( ( G gsum F ) e. ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) <-> { ( G gsum F ) } C_ ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) ) |
| 23 | 20 22 | sylibr | |- ( ph -> ( G gsum F ) e. ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) ) |
| 24 | 1 2 3 4 5 6 7 8 | tsmsgsum | |- ( ph -> ( G tsums F ) = ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) ) |
| 25 | 23 24 | eleqtrrd | |- ( ph -> ( G gsum F ) e. ( G tsums F ) ) |