This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A and B are members of a Tarski class, their unordered pair is also an element of the class. JFM CLASSES2 th. 3 (partly). (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskpr | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → { 𝐴 , 𝐵 } ∈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → 𝑇 ∈ Tarski ) | |
| 2 | prssi | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → { 𝐴 , 𝐵 } ⊆ 𝑇 ) | |
| 3 | 2 | 3adant1 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → { 𝐴 , 𝐵 } ⊆ 𝑇 ) |
| 4 | prfi | ⊢ { 𝐴 , 𝐵 } ∈ Fin | |
| 5 | isfinite | ⊢ ( { 𝐴 , 𝐵 } ∈ Fin ↔ { 𝐴 , 𝐵 } ≺ ω ) | |
| 6 | 4 5 | mpbi | ⊢ { 𝐴 , 𝐵 } ≺ ω |
| 7 | ne0i | ⊢ ( 𝐴 ∈ 𝑇 → 𝑇 ≠ ∅ ) | |
| 8 | tskinf | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ω ≼ 𝑇 ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → ω ≼ 𝑇 ) |
| 10 | sdomdomtr | ⊢ ( ( { 𝐴 , 𝐵 } ≺ ω ∧ ω ≼ 𝑇 ) → { 𝐴 , 𝐵 } ≺ 𝑇 ) | |
| 11 | 6 9 10 | sylancr | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → { 𝐴 , 𝐵 } ≺ 𝑇 ) |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → { 𝐴 , 𝐵 } ≺ 𝑇 ) |
| 13 | tskssel | ⊢ ( ( 𝑇 ∈ Tarski ∧ { 𝐴 , 𝐵 } ⊆ 𝑇 ∧ { 𝐴 , 𝐵 } ≺ 𝑇 ) → { 𝐴 , 𝐵 } ∈ 𝑇 ) | |
| 14 | 1 3 12 13 | syl3anc | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → { 𝐴 , 𝐵 } ∈ 𝑇 ) |