This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of an element of a transitive Tarski class is an element of the class. (Contributed by FL, 17-Apr-2011) (Revised by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskint | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐴 ≠ ∅ ) → 𝑇 ∈ Tarski ) | |
| 2 | tskuni | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ∪ 𝐴 ∈ 𝑇 ) | |
| 3 | 2 | 3expa | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ) → ∪ 𝐴 ∈ 𝑇 ) |
| 4 | 3 | 3adant3 | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐴 ≠ ∅ ) → ∪ 𝐴 ∈ 𝑇 ) |
| 5 | intssuni | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) | |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
| 7 | tskss | ⊢ ( ( 𝑇 ∈ Tarski ∧ ∪ 𝐴 ∈ 𝑇 ∧ ∩ 𝐴 ⊆ ∪ 𝐴 ) → ∩ 𝐴 ∈ 𝑇 ) | |
| 8 | 1 4 6 7 | syl3anc | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ 𝑇 ) |