This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf .) (Contributed by NM, 22-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskr1om2 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ∪ ( 𝑅1 “ ω ) ⊆ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni2 | ⊢ ( 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ↔ ∃ 𝑥 ∈ ( 𝑅1 “ ω ) 𝑦 ∈ 𝑥 ) | |
| 2 | r1fnon | ⊢ 𝑅1 Fn On | |
| 3 | fnfun | ⊢ ( 𝑅1 Fn On → Fun 𝑅1 ) | |
| 4 | 2 3 | ax-mp | ⊢ Fun 𝑅1 |
| 5 | fvelima | ⊢ ( ( Fun 𝑅1 ∧ 𝑥 ∈ ( 𝑅1 “ ω ) ) → ∃ 𝑦 ∈ ω ( 𝑅1 ‘ 𝑦 ) = 𝑥 ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝑥 ∈ ( 𝑅1 “ ω ) → ∃ 𝑦 ∈ ω ( 𝑅1 ‘ 𝑦 ) = 𝑥 ) |
| 7 | r1tr | ⊢ Tr ( 𝑅1 ‘ 𝑦 ) | |
| 8 | treq | ⊢ ( ( 𝑅1 ‘ 𝑦 ) = 𝑥 → ( Tr ( 𝑅1 ‘ 𝑦 ) ↔ Tr 𝑥 ) ) | |
| 9 | 7 8 | mpbii | ⊢ ( ( 𝑅1 ‘ 𝑦 ) = 𝑥 → Tr 𝑥 ) |
| 10 | 9 | rexlimivw | ⊢ ( ∃ 𝑦 ∈ ω ( 𝑅1 ‘ 𝑦 ) = 𝑥 → Tr 𝑥 ) |
| 11 | trss | ⊢ ( Tr 𝑥 → ( 𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥 ) ) | |
| 12 | 6 10 11 | 3syl | ⊢ ( 𝑥 ∈ ( 𝑅1 “ ω ) → ( 𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥 ) ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ ( 𝑅1 “ ω ) ) → ( 𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥 ) ) |
| 14 | tskr1om | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 “ ω ) ⊆ 𝑇 ) | |
| 15 | 14 | sseld | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑥 ∈ ( 𝑅1 “ ω ) → 𝑥 ∈ 𝑇 ) ) |
| 16 | tskss | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ⊆ 𝑥 ) → 𝑦 ∈ 𝑇 ) | |
| 17 | 16 | 3exp | ⊢ ( 𝑇 ∈ Tarski → ( 𝑥 ∈ 𝑇 → ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇 ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑥 ∈ 𝑇 → ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇 ) ) ) |
| 19 | 15 18 | syld | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑥 ∈ ( 𝑅1 “ ω ) → ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇 ) ) ) |
| 20 | 19 | imp | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ ( 𝑅1 “ ω ) ) → ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇 ) ) |
| 21 | 13 20 | syld | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ ( 𝑅1 “ ω ) ) → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑇 ) ) |
| 22 | 21 | rexlimdva | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( ∃ 𝑥 ∈ ( 𝑅1 “ ω ) 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑇 ) ) |
| 23 | 1 22 | biimtrid | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑦 ∈ ∪ ( 𝑅1 “ ω ) → 𝑦 ∈ 𝑇 ) ) |
| 24 | 23 | ssrdv | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ∪ ( 𝑅1 “ ω ) ⊆ 𝑇 ) |