This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty Tarski class is infinite, because it contains all the finite levels of the cumulative hierarchy. (This proof does not use ax-inf .) (Contributed by Mario Carneiro, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskr1om | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 “ ω ) ⊆ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑥 = ∅ → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ ∅ ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑥 = ∅ → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑇 ↔ ( 𝑅1 ‘ ∅ ) ∈ 𝑇 ) ) |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑇 ↔ ( 𝑅1 ‘ 𝑦 ) ∈ 𝑇 ) ) |
| 5 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑇 ↔ ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑇 ) ) |
| 7 | r10 | ⊢ ( 𝑅1 ‘ ∅ ) = ∅ | |
| 8 | tsk0 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ∅ ∈ 𝑇 ) | |
| 9 | 7 8 | eqeltrid | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 ‘ ∅ ) ∈ 𝑇 ) |
| 10 | tskpw | ⊢ ( ( 𝑇 ∈ Tarski ∧ ( 𝑅1 ‘ 𝑦 ) ∈ 𝑇 ) → 𝒫 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑇 ) | |
| 11 | nnon | ⊢ ( 𝑦 ∈ ω → 𝑦 ∈ On ) | |
| 12 | r1suc | ⊢ ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝑦 ∈ ω → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) |
| 14 | 13 | eleq1d | ⊢ ( 𝑦 ∈ ω → ( ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑇 ↔ 𝒫 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑇 ) ) |
| 15 | 10 14 | imbitrrid | ⊢ ( 𝑦 ∈ ω → ( ( 𝑇 ∈ Tarski ∧ ( 𝑅1 ‘ 𝑦 ) ∈ 𝑇 ) → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑇 ) ) |
| 16 | 15 | expd | ⊢ ( 𝑦 ∈ ω → ( 𝑇 ∈ Tarski → ( ( 𝑅1 ‘ 𝑦 ) ∈ 𝑇 → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑇 ) ) ) |
| 17 | 16 | adantrd | ⊢ ( 𝑦 ∈ ω → ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( ( 𝑅1 ‘ 𝑦 ) ∈ 𝑇 → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑇 ) ) ) |
| 18 | 2 4 6 9 17 | finds2 | ⊢ ( 𝑥 ∈ ω → ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑇 ) ) |
| 19 | eleq1 | ⊢ ( ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑇 ↔ 𝑦 ∈ 𝑇 ) ) | |
| 20 | 19 | imbi2d | ⊢ ( ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ( ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑇 ) ↔ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 𝑦 ∈ 𝑇 ) ) ) |
| 21 | 18 20 | syl5ibcom | ⊢ ( 𝑥 ∈ ω → ( ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 𝑦 ∈ 𝑇 ) ) ) |
| 22 | 21 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 𝑦 ∈ 𝑇 ) ) |
| 23 | r1fnon | ⊢ 𝑅1 Fn On | |
| 24 | fnfun | ⊢ ( 𝑅1 Fn On → Fun 𝑅1 ) | |
| 25 | 23 24 | ax-mp | ⊢ Fun 𝑅1 |
| 26 | fvelima | ⊢ ( ( Fun 𝑅1 ∧ 𝑦 ∈ ( 𝑅1 “ ω ) ) → ∃ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = 𝑦 ) | |
| 27 | 25 26 | mpan | ⊢ ( 𝑦 ∈ ( 𝑅1 “ ω ) → ∃ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = 𝑦 ) |
| 28 | 22 27 | syl11 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑦 ∈ ( 𝑅1 “ ω ) → 𝑦 ∈ 𝑇 ) ) |
| 29 | 28 | ssrdv | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 “ ω ) ⊆ 𝑇 ) |