This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf .) (Contributed by NM, 22-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskr1om2 | |- ( ( T e. Tarski /\ T =/= (/) ) -> U. ( R1 " _om ) C_ T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni2 | |- ( y e. U. ( R1 " _om ) <-> E. x e. ( R1 " _om ) y e. x ) |
|
| 2 | r1fnon | |- R1 Fn On |
|
| 3 | fnfun | |- ( R1 Fn On -> Fun R1 ) |
|
| 4 | 2 3 | ax-mp | |- Fun R1 |
| 5 | fvelima | |- ( ( Fun R1 /\ x e. ( R1 " _om ) ) -> E. y e. _om ( R1 ` y ) = x ) |
|
| 6 | 4 5 | mpan | |- ( x e. ( R1 " _om ) -> E. y e. _om ( R1 ` y ) = x ) |
| 7 | r1tr | |- Tr ( R1 ` y ) |
|
| 8 | treq | |- ( ( R1 ` y ) = x -> ( Tr ( R1 ` y ) <-> Tr x ) ) |
|
| 9 | 7 8 | mpbii | |- ( ( R1 ` y ) = x -> Tr x ) |
| 10 | 9 | rexlimivw | |- ( E. y e. _om ( R1 ` y ) = x -> Tr x ) |
| 11 | trss | |- ( Tr x -> ( y e. x -> y C_ x ) ) |
|
| 12 | 6 10 11 | 3syl | |- ( x e. ( R1 " _om ) -> ( y e. x -> y C_ x ) ) |
| 13 | 12 | adantl | |- ( ( ( T e. Tarski /\ T =/= (/) ) /\ x e. ( R1 " _om ) ) -> ( y e. x -> y C_ x ) ) |
| 14 | tskr1om | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( R1 " _om ) C_ T ) |
|
| 15 | 14 | sseld | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( x e. ( R1 " _om ) -> x e. T ) ) |
| 16 | tskss | |- ( ( T e. Tarski /\ x e. T /\ y C_ x ) -> y e. T ) |
|
| 17 | 16 | 3exp | |- ( T e. Tarski -> ( x e. T -> ( y C_ x -> y e. T ) ) ) |
| 18 | 17 | adantr | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( x e. T -> ( y C_ x -> y e. T ) ) ) |
| 19 | 15 18 | syld | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( x e. ( R1 " _om ) -> ( y C_ x -> y e. T ) ) ) |
| 20 | 19 | imp | |- ( ( ( T e. Tarski /\ T =/= (/) ) /\ x e. ( R1 " _om ) ) -> ( y C_ x -> y e. T ) ) |
| 21 | 13 20 | syld | |- ( ( ( T e. Tarski /\ T =/= (/) ) /\ x e. ( R1 " _om ) ) -> ( y e. x -> y e. T ) ) |
| 22 | 21 | rexlimdva | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( E. x e. ( R1 " _om ) y e. x -> y e. T ) ) |
| 23 | 1 22 | biimtrid | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( y e. U. ( R1 " _om ) -> y e. T ) ) |
| 24 | 23 | ssrdv | |- ( ( T e. Tarski /\ T =/= (/) ) -> U. ( R1 " _om ) C_ T ) |