This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty Tarski class is infinite. (Contributed by FL, 22-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskinf | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ω ≼ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r111 | ⊢ 𝑅1 : On –1-1→ V | |
| 2 | omsson | ⊢ ω ⊆ On | |
| 3 | omex | ⊢ ω ∈ V | |
| 4 | 3 | f1imaen | ⊢ ( ( 𝑅1 : On –1-1→ V ∧ ω ⊆ On ) → ( 𝑅1 “ ω ) ≈ ω ) |
| 5 | 1 2 4 | mp2an | ⊢ ( 𝑅1 “ ω ) ≈ ω |
| 6 | 5 | ensymi | ⊢ ω ≈ ( 𝑅1 “ ω ) |
| 7 | simpl | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 𝑇 ∈ Tarski ) | |
| 8 | tskr1om | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 “ ω ) ⊆ 𝑇 ) | |
| 9 | ssdomg | ⊢ ( 𝑇 ∈ Tarski → ( ( 𝑅1 “ ω ) ⊆ 𝑇 → ( 𝑅1 “ ω ) ≼ 𝑇 ) ) | |
| 10 | 7 8 9 | sylc | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 “ ω ) ≼ 𝑇 ) |
| 11 | endomtr | ⊢ ( ( ω ≈ ( 𝑅1 “ ω ) ∧ ( 𝑅1 “ ω ) ≼ 𝑇 ) → ω ≼ 𝑇 ) | |
| 12 | 6 10 11 | sylancr | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ω ≼ 𝑇 ) |