This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Tarski class contains all ordinals smaller than it. (Contributed by Mario Carneiro, 8-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskord | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ≺ 𝑇 ) → 𝐴 ∈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≺ 𝑇 ↔ 𝑦 ≺ 𝑇 ) ) | |
| 2 | 1 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ↔ ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) ) ) |
| 3 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑇 ↔ 𝑦 ∈ 𝑇 ) ) | |
| 4 | 2 3 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) → 𝑥 ∈ 𝑇 ) ↔ ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) ) ) |
| 5 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≺ 𝑇 ↔ 𝐴 ≺ 𝑇 ) ) | |
| 6 | 5 | anbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ↔ ( 𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇 ) ) ) |
| 7 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑇 ↔ 𝐴 ∈ 𝑇 ) ) | |
| 8 | 6 7 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) → 𝑥 ∈ 𝑇 ) ↔ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇 ) → 𝐴 ∈ 𝑇 ) ) ) |
| 9 | simplrl | ⊢ ( ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑇 ∈ Tarski ) | |
| 10 | onelss | ⊢ ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥 ) ) | |
| 11 | ssdomg | ⊢ ( 𝑥 ∈ On → ( 𝑦 ⊆ 𝑥 → 𝑦 ≼ 𝑥 ) ) | |
| 12 | 10 11 | syld | ⊢ ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → 𝑦 ≼ 𝑥 ) ) |
| 13 | 12 | imp | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ≼ 𝑥 ) |
| 14 | 13 | adantlr | ⊢ ( ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ≼ 𝑥 ) |
| 15 | simplrr | ⊢ ( ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ≺ 𝑇 ) | |
| 16 | domsdomtr | ⊢ ( ( 𝑦 ≼ 𝑥 ∧ 𝑥 ≺ 𝑇 ) → 𝑦 ≺ 𝑇 ) | |
| 17 | 14 15 16 | syl2anc | ⊢ ( ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ≺ 𝑇 ) |
| 18 | pm2.27 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → ( ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑇 ) ) | |
| 19 | 9 17 18 | syl2anc | ⊢ ( ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑇 ) ) |
| 20 | 19 | ralimdva | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 ) ) |
| 21 | dfss3 | ⊢ ( 𝑥 ⊆ 𝑇 ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 ) | |
| 22 | tskssel | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ⊆ 𝑇 ∧ 𝑥 ≺ 𝑇 ) → 𝑥 ∈ 𝑇 ) | |
| 23 | 22 | 3exp | ⊢ ( 𝑇 ∈ Tarski → ( 𝑥 ⊆ 𝑇 → ( 𝑥 ≺ 𝑇 → 𝑥 ∈ 𝑇 ) ) ) |
| 24 | 21 23 | biimtrrid | ⊢ ( 𝑇 ∈ Tarski → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → ( 𝑥 ≺ 𝑇 → 𝑥 ∈ 𝑇 ) ) ) |
| 25 | 24 | com23 | ⊢ ( 𝑇 ∈ Tarski → ( 𝑥 ≺ 𝑇 → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → 𝑥 ∈ 𝑇 ) ) ) |
| 26 | 25 | imp | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → 𝑥 ∈ 𝑇 ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → 𝑥 ∈ 𝑇 ) ) |
| 28 | 20 27 | syld | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) → 𝑥 ∈ 𝑇 ) ) |
| 29 | 28 | ex | ⊢ ( 𝑥 ∈ On → ( ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) → 𝑥 ∈ 𝑇 ) ) ) |
| 30 | 29 | com23 | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) → ( ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) → 𝑥 ∈ 𝑇 ) ) ) |
| 31 | 4 8 30 | tfis3 | ⊢ ( 𝐴 ∈ On → ( ( 𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇 ) → 𝐴 ∈ 𝑇 ) ) |
| 32 | 31 | 3impib | ⊢ ( ( 𝐴 ∈ On ∧ 𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇 ) → 𝐴 ∈ 𝑇 ) |
| 33 | 32 | 3com12 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ≺ 𝑇 ) → 𝐴 ∈ 𝑇 ) |