This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty Tarski class is infinite. (Contributed by FL, 22-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskinf | |- ( ( T e. Tarski /\ T =/= (/) ) -> _om ~<_ T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r111 | |- R1 : On -1-1-> _V |
|
| 2 | omsson | |- _om C_ On |
|
| 3 | omex | |- _om e. _V |
|
| 4 | 3 | f1imaen | |- ( ( R1 : On -1-1-> _V /\ _om C_ On ) -> ( R1 " _om ) ~~ _om ) |
| 5 | 1 2 4 | mp2an | |- ( R1 " _om ) ~~ _om |
| 6 | 5 | ensymi | |- _om ~~ ( R1 " _om ) |
| 7 | simpl | |- ( ( T e. Tarski /\ T =/= (/) ) -> T e. Tarski ) |
|
| 8 | tskr1om | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( R1 " _om ) C_ T ) |
|
| 9 | ssdomg | |- ( T e. Tarski -> ( ( R1 " _om ) C_ T -> ( R1 " _om ) ~<_ T ) ) |
|
| 10 | 7 8 9 | sylc | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( R1 " _om ) ~<_ T ) |
| 11 | endomtr | |- ( ( _om ~~ ( R1 " _om ) /\ ( R1 " _om ) ~<_ T ) -> _om ~<_ T ) |
|
| 12 | 6 10 11 | sylancr | |- ( ( T e. Tarski /\ T =/= (/) ) -> _om ~<_ T ) |