This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a class of transitive sets is transitive. Alternate proof of truni . truniALT is truniALTVD without virtual deductions and was automatically derived from truniALTVD using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | truniALT | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑦 ∈ ∪ 𝐴 ) | |
| 2 | 1 | a1i | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑦 ∈ ∪ 𝐴 ) ) |
| 3 | eluni | ⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ) | |
| 4 | 2 3 | imbitrdi | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ) ) |
| 5 | simpl | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ 𝑦 ) | |
| 6 | 5 | a1i | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ 𝑦 ) ) |
| 7 | simpl | ⊢ ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑦 ∈ 𝑞 ) | |
| 8 | 7 | 2a1i | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑦 ∈ 𝑞 ) ) ) |
| 9 | simpr | ⊢ ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ 𝐴 ) | |
| 10 | 9 | 2a1i | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ 𝐴 ) ) ) |
| 11 | rspsbc | ⊢ ( 𝑞 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) | |
| 12 | 11 | com12 | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( 𝑞 ∈ 𝐴 → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) |
| 13 | 10 12 | syl6d | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) ) |
| 14 | trsbc | ⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 ↔ Tr 𝑞 ) ) | |
| 15 | 14 | biimpd | ⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 → Tr 𝑞 ) ) |
| 16 | 10 13 15 | ee33 | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → Tr 𝑞 ) ) ) |
| 17 | trel | ⊢ ( Tr 𝑞 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑞 ) → 𝑧 ∈ 𝑞 ) ) | |
| 18 | 17 | expdcom | ⊢ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑞 → ( Tr 𝑞 → 𝑧 ∈ 𝑞 ) ) ) |
| 19 | 6 8 16 18 | ee233 | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ 𝑞 ) ) ) |
| 20 | elunii | ⊢ ( ( 𝑧 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) | |
| 21 | 20 | ex | ⊢ ( 𝑧 ∈ 𝑞 → ( 𝑞 ∈ 𝐴 → 𝑧 ∈ ∪ 𝐴 ) ) |
| 22 | 19 10 21 | ee33 | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) ) |
| 23 | 22 | alrimdv | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ∀ 𝑞 ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) ) |
| 24 | 19.23v | ⊢ ( ∀ 𝑞 ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ↔ ( ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) | |
| 25 | 23 24 | imbitrdi | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ( ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) ) |
| 26 | 4 25 | mpdd | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
| 27 | 26 | alrimivv | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
| 28 | dftr2 | ⊢ ( Tr ∪ 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) | |
| 29 | 27 28 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴 ) |