This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of Axiom 4 of Mendelson p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 and spsbc . See also rspsbca and rspcsbela . (Contributed by NM, 17-Nov-2006) (Proof shortened by Mario Carneiro, 13-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rspsbc | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralsvw | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 2 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 3 | 2 | rspcv | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 [ 𝑦 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 4 | 1 3 | biimtrid | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |