This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of trails in a pseudograph, definition of walks expanded. (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 7-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrtrls.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| upgrtrls.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | upgrtrls | ⊢ ( 𝐺 ∈ UPGraph → ( Trails ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( ( 𝑓 ∈ Word dom 𝐼 ∧ Fun ◡ 𝑓 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrtrls.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | upgrtrls.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | trlsfval | ⊢ ( Trails ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑓 ) } | |
| 4 | 1 2 | upgriswlk | ⊢ ( 𝐺 ∈ UPGraph → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ↔ ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
| 5 | 4 | anbi1d | ⊢ ( 𝐺 ∈ UPGraph → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑓 ) ↔ ( ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ∧ Fun ◡ 𝑓 ) ) ) |
| 6 | an32 | ⊢ ( ( ( 𝑓 ∈ Word dom 𝐼 ∧ ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) ∧ Fun ◡ 𝑓 ) ↔ ( ( 𝑓 ∈ Word dom 𝐼 ∧ Fun ◡ 𝑓 ) ∧ ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) ) | |
| 7 | 3anass | ⊢ ( ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ↔ ( 𝑓 ∈ Word dom 𝐼 ∧ ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) ) | |
| 8 | 7 | anbi1i | ⊢ ( ( ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ∧ Fun ◡ 𝑓 ) ↔ ( ( 𝑓 ∈ Word dom 𝐼 ∧ ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) ∧ Fun ◡ 𝑓 ) ) |
| 9 | 3anass | ⊢ ( ( ( 𝑓 ∈ Word dom 𝐼 ∧ Fun ◡ 𝑓 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ↔ ( ( 𝑓 ∈ Word dom 𝐼 ∧ Fun ◡ 𝑓 ) ∧ ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) ) | |
| 10 | 6 8 9 | 3bitr4i | ⊢ ( ( ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ∧ Fun ◡ 𝑓 ) ↔ ( ( 𝑓 ∈ Word dom 𝐼 ∧ Fun ◡ 𝑓 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) |
| 11 | 5 10 | bitrdi | ⊢ ( 𝐺 ∈ UPGraph → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑓 ) ↔ ( ( 𝑓 ∈ Word dom 𝐼 ∧ Fun ◡ 𝑓 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
| 12 | 11 | opabbidv | ⊢ ( 𝐺 ∈ UPGraph → { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑓 ) } = { 〈 𝑓 , 𝑝 〉 ∣ ( ( 𝑓 ∈ Word dom 𝐼 ∧ Fun ◡ 𝑓 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) } ) |
| 13 | 3 12 | eqtrid | ⊢ ( 𝐺 ∈ UPGraph → ( Trails ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( ( 𝑓 ∈ Word dom 𝐼 ∧ Fun ◡ 𝑓 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) } ) |