This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divcnvshft.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| divcnvshft.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| divcnvshft.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | ||
| divcnvshft.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | ||
| divcnvshft.5 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| divcnvshft.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐴 / ( 𝑘 + 𝐵 ) ) ) | ||
| Assertion | divcnvshft | ⊢ ( 𝜑 → 𝐹 ⇝ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcnvshft.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | divcnvshft.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | divcnvshft.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 4 | divcnvshft.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | |
| 5 | divcnvshft.5 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 6 | divcnvshft.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐴 / ( 𝑘 + 𝐵 ) ) ) | |
| 7 | divcnv | ⊢ ( 𝐴 ∈ ℂ → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) | |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) |
| 9 | nnssz | ⊢ ℕ ⊆ ℤ | |
| 10 | resmpt | ⊢ ( ℕ ⊆ ℤ → ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ℕ ) = ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ℕ ) = ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) |
| 12 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 13 | 12 | reseq2i | ⊢ ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ℕ ) = ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ( ℤ≥ ‘ 1 ) ) |
| 14 | 11 13 | eqtr3i | ⊢ ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) = ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ( ℤ≥ ‘ 1 ) ) |
| 15 | 14 | breq1i | ⊢ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ↔ ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ( ℤ≥ ‘ 1 ) ) ⇝ 0 ) |
| 16 | 1z | ⊢ 1 ∈ ℤ | |
| 17 | zex | ⊢ ℤ ∈ V | |
| 18 | 17 | mptex | ⊢ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ∈ V |
| 19 | climres | ⊢ ( ( 1 ∈ ℤ ∧ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ∈ V ) → ( ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ( ℤ≥ ‘ 1 ) ) ⇝ 0 ↔ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) ) | |
| 20 | 16 18 19 | mp2an | ⊢ ( ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ( ℤ≥ ‘ 1 ) ) ⇝ 0 ↔ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) |
| 21 | 15 20 | bitri | ⊢ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ↔ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) |
| 22 | 8 21 | sylib | ⊢ ( 𝜑 → ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) |
| 23 | 18 | a1i | ⊢ ( 𝜑 → ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ∈ V ) |
| 24 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 25 | 1 24 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 26 | 25 | sseli | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 27 | 26 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ℤ ) |
| 28 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℤ ) |
| 29 | 27 28 | zaddcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 + 𝐵 ) ∈ ℤ ) |
| 30 | oveq2 | ⊢ ( 𝑚 = ( 𝑘 + 𝐵 ) → ( 𝐴 / 𝑚 ) = ( 𝐴 / ( 𝑘 + 𝐵 ) ) ) | |
| 31 | eqid | ⊢ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) = ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) | |
| 32 | ovex | ⊢ ( 𝐴 / ( 𝑘 + 𝐵 ) ) ∈ V | |
| 33 | 30 31 32 | fvmpt | ⊢ ( ( 𝑘 + 𝐵 ) ∈ ℤ → ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ‘ ( 𝑘 + 𝐵 ) ) = ( 𝐴 / ( 𝑘 + 𝐵 ) ) ) |
| 34 | 29 33 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ‘ ( 𝑘 + 𝐵 ) ) = ( 𝐴 / ( 𝑘 + 𝐵 ) ) ) |
| 35 | 34 6 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ‘ ( 𝑘 + 𝐵 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 36 | 1 2 4 5 23 35 | climshft2 | ⊢ ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) ) |
| 37 | 22 36 | mpbird | ⊢ ( 𝜑 → 𝐹 ⇝ 0 ) |