This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for the trace of a Cauchy filter base to be a Cauchy filter base for the restricted uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trcfilu | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 ↾t 𝐴 ) ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 2 | simp2l | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) | |
| 3 | iscfilu | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) | |
| 4 | 3 | biimpa | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) |
| 5 | 1 2 4 | syl2anc | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) |
| 6 | 5 | simpld | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 7 | simp3 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) | |
| 8 | simp2r | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) | |
| 9 | trfbas2 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ) | |
| 10 | 9 | biimpar | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) → ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ) |
| 11 | 6 7 8 10 | syl21anc | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ) |
| 12 | 2 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) |
| 13 | 1 | adantr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 14 | 13 | elfvexd | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → 𝑋 ∈ V ) |
| 15 | 7 | adantr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → 𝐴 ⊆ 𝑋 ) |
| 16 | 14 15 | ssexd | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → 𝐴 ∈ V ) |
| 17 | 16 | ad4antr | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → 𝐴 ∈ V ) |
| 18 | simplr | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → 𝑎 ∈ 𝐹 ) | |
| 19 | elrestr | ⊢ ( ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ 𝐴 ∈ V ∧ 𝑎 ∈ 𝐹 ) → ( 𝑎 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ) | |
| 20 | 12 17 18 19 | syl3anc | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → ( 𝑎 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ) |
| 21 | inxp | ⊢ ( ( 𝑎 × 𝑎 ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝑎 ∩ 𝐴 ) × ( 𝑎 ∩ 𝐴 ) ) | |
| 22 | simpr | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) | |
| 23 | 22 | ssrind | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → ( ( 𝑎 × 𝑎 ) ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 24 | simpllr | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 25 | 23 24 | sseqtrrd | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → ( ( 𝑎 × 𝑎 ) ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑤 ) |
| 26 | 21 25 | eqsstrrid | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → ( ( 𝑎 ∩ 𝐴 ) × ( 𝑎 ∩ 𝐴 ) ) ⊆ 𝑤 ) |
| 27 | id | ⊢ ( 𝑏 = ( 𝑎 ∩ 𝐴 ) → 𝑏 = ( 𝑎 ∩ 𝐴 ) ) | |
| 28 | 27 | sqxpeqd | ⊢ ( 𝑏 = ( 𝑎 ∩ 𝐴 ) → ( 𝑏 × 𝑏 ) = ( ( 𝑎 ∩ 𝐴 ) × ( 𝑎 ∩ 𝐴 ) ) ) |
| 29 | 28 | sseq1d | ⊢ ( 𝑏 = ( 𝑎 ∩ 𝐴 ) → ( ( 𝑏 × 𝑏 ) ⊆ 𝑤 ↔ ( ( 𝑎 ∩ 𝐴 ) × ( 𝑎 ∩ 𝐴 ) ) ⊆ 𝑤 ) ) |
| 30 | 29 | rspcev | ⊢ ( ( ( 𝑎 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ∧ ( ( 𝑎 ∩ 𝐴 ) × ( 𝑎 ∩ 𝐴 ) ) ⊆ 𝑤 ) → ∃ 𝑏 ∈ ( 𝐹 ↾t 𝐴 ) ( 𝑏 × 𝑏 ) ⊆ 𝑤 ) |
| 31 | 20 26 30 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → ∃ 𝑏 ∈ ( 𝐹 ↾t 𝐴 ) ( 𝑏 × 𝑏 ) ⊆ 𝑤 ) |
| 32 | 5 | simprd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 33 | 32 | r19.21bi | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 34 | 33 | ad4ant13 | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 35 | 31 34 | r19.29a | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑏 ∈ ( 𝐹 ↾t 𝐴 ) ( 𝑏 × 𝑏 ) ⊆ 𝑤 ) |
| 36 | 16 16 | xpexd | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → ( 𝐴 × 𝐴 ) ∈ V ) |
| 37 | simpr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) | |
| 38 | elrest | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐴 × 𝐴 ) ∈ V ) → ( 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ↔ ∃ 𝑣 ∈ 𝑈 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) | |
| 39 | 38 | biimpa | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐴 × 𝐴 ) ∈ V ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑣 ∈ 𝑈 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 40 | 13 36 37 39 | syl21anc | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑣 ∈ 𝑈 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 41 | 35 40 | r19.29a | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑏 ∈ ( 𝐹 ↾t 𝐴 ) ( 𝑏 × 𝑏 ) ⊆ 𝑤 ) |
| 42 | 41 | ralrimiva | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ∀ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑏 ∈ ( 𝐹 ↾t 𝐴 ) ( 𝑏 × 𝑏 ) ⊆ 𝑤 ) |
| 43 | trust | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ) | |
| 44 | 1 7 43 | syl2anc | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ) |
| 45 | iscfilu | ⊢ ( ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ↔ ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ∧ ∀ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑏 ∈ ( 𝐹 ↾t 𝐴 ) ( 𝑏 × 𝑏 ) ⊆ 𝑤 ) ) ) | |
| 46 | 44 45 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ↔ ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ∧ ∀ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑏 ∈ ( 𝐹 ↾t 𝐴 ) ( 𝑏 × 𝑏 ) ⊆ 𝑤 ) ) ) |
| 47 | 11 42 46 | mpbir2and | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 ↾t 𝐴 ) ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) |