This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered triple of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpss.1 | ⊢ 𝐴 ∈ V | |
| tpss.2 | ⊢ 𝐵 ∈ V | ||
| tpss.3 | ⊢ 𝐶 ∈ V | ||
| Assertion | tpss | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷 ) ↔ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpss.1 | ⊢ 𝐴 ∈ V | |
| 2 | tpss.2 | ⊢ 𝐵 ∈ V | |
| 3 | tpss.3 | ⊢ 𝐶 ∈ V | |
| 4 | unss | ⊢ ( ( { 𝐴 , 𝐵 } ⊆ 𝐷 ∧ { 𝐶 } ⊆ 𝐷 ) ↔ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ⊆ 𝐷 ) | |
| 5 | df-3an | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷 ) ↔ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐶 ∈ 𝐷 ) ) | |
| 6 | 1 2 | prss | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝐷 ) |
| 7 | 3 | snss | ⊢ ( 𝐶 ∈ 𝐷 ↔ { 𝐶 } ⊆ 𝐷 ) |
| 8 | 6 7 | anbi12i | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐶 ∈ 𝐷 ) ↔ ( { 𝐴 , 𝐵 } ⊆ 𝐷 ∧ { 𝐶 } ⊆ 𝐷 ) ) |
| 9 | 5 8 | bitri | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷 ) ↔ ( { 𝐴 , 𝐵 } ⊆ 𝐷 ∧ { 𝐶 } ⊆ 𝐷 ) ) |
| 10 | df-tp | ⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) | |
| 11 | 10 | sseq1i | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ↔ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ⊆ 𝐷 ) |
| 12 | 4 9 11 | 3bitr4i | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷 ) ↔ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) |