This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered triple of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpss.1 | |- A e. _V |
|
| tpss.2 | |- B e. _V |
||
| tpss.3 | |- C e. _V |
||
| Assertion | tpss | |- ( ( A e. D /\ B e. D /\ C e. D ) <-> { A , B , C } C_ D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpss.1 | |- A e. _V |
|
| 2 | tpss.2 | |- B e. _V |
|
| 3 | tpss.3 | |- C e. _V |
|
| 4 | unss | |- ( ( { A , B } C_ D /\ { C } C_ D ) <-> ( { A , B } u. { C } ) C_ D ) |
|
| 5 | df-3an | |- ( ( A e. D /\ B e. D /\ C e. D ) <-> ( ( A e. D /\ B e. D ) /\ C e. D ) ) |
|
| 6 | 1 2 | prss | |- ( ( A e. D /\ B e. D ) <-> { A , B } C_ D ) |
| 7 | 3 | snss | |- ( C e. D <-> { C } C_ D ) |
| 8 | 6 7 | anbi12i | |- ( ( ( A e. D /\ B e. D ) /\ C e. D ) <-> ( { A , B } C_ D /\ { C } C_ D ) ) |
| 9 | 5 8 | bitri | |- ( ( A e. D /\ B e. D /\ C e. D ) <-> ( { A , B } C_ D /\ { C } C_ D ) ) |
| 10 | df-tp | |- { A , B , C } = ( { A , B } u. { C } ) |
|
| 11 | 10 | sseq1i | |- ( { A , B , C } C_ D <-> ( { A , B } u. { C } ) C_ D ) |
| 12 | 4 9 11 | 3bitr4i | |- ( ( A e. D /\ B e. D /\ C e. D ) <-> { A , B , C } C_ D ) |