This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transposition of an I X J -matrix is a J X I -matrix, see also the statement in Lang p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposmap | |- ( A e. ( B ^m ( I X. J ) ) -> tpos A e. ( B ^m ( J X. I ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi | |- ( A e. ( B ^m ( I X. J ) ) -> A : ( I X. J ) --> B ) |
|
| 2 | tposf | |- ( A : ( I X. J ) --> B -> tpos A : ( J X. I ) --> B ) |
|
| 3 | 1 2 | syl | |- ( A e. ( B ^m ( I X. J ) ) -> tpos A : ( J X. I ) --> B ) |
| 4 | elmapex | |- ( A e. ( B ^m ( I X. J ) ) -> ( B e. _V /\ ( I X. J ) e. _V ) ) |
|
| 5 | cnvxp | |- `' ( I X. J ) = ( J X. I ) |
|
| 6 | cnvexg | |- ( ( I X. J ) e. _V -> `' ( I X. J ) e. _V ) |
|
| 7 | 5 6 | eqeltrrid | |- ( ( I X. J ) e. _V -> ( J X. I ) e. _V ) |
| 8 | 7 | anim2i | |- ( ( B e. _V /\ ( I X. J ) e. _V ) -> ( B e. _V /\ ( J X. I ) e. _V ) ) |
| 9 | elmapg | |- ( ( B e. _V /\ ( J X. I ) e. _V ) -> ( tpos A e. ( B ^m ( J X. I ) ) <-> tpos A : ( J X. I ) --> B ) ) |
|
| 10 | 4 8 9 | 3syl | |- ( A e. ( B ^m ( I X. J ) ) -> ( tpos A e. ( B ^m ( J X. I ) ) <-> tpos A : ( J X. I ) --> B ) ) |
| 11 | 3 10 | mpbird | |- ( A e. ( B ^m ( I X. J ) ) -> tpos A e. ( B ^m ( J X. I ) ) ) |