This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Join value. Since both sides evaluate to (/) when they don't exist, for convenience we drop the { X , Y } e. dom U requirement. (Contributed by NM, 9-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joindef.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| joindef.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| joindef.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| joindef.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑊 ) | ||
| joindef.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑍 ) | ||
| Assertion | joinval | ⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joindef.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 2 | joindef.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | joindef.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 4 | joindef.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑊 ) | |
| 5 | joindef.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑍 ) | |
| 6 | 1 2 | joinfval2 | ⊢ ( 𝐾 ∈ 𝑉 → ∨ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) } ) |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → ∨ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) } ) |
| 8 | 7 | oveqd | ⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) = ( 𝑋 { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) } 𝑌 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑋 { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) } 𝑌 ) ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) → { 𝑋 , 𝑌 } ∈ dom 𝑈 ) | |
| 11 | eqidd | ⊢ ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) → ( 𝑈 ‘ { 𝑋 , 𝑌 } ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) | |
| 12 | fvexd | ⊢ ( 𝜑 → ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ∈ V ) | |
| 13 | preq12 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → { 𝑥 , 𝑦 } = { 𝑋 , 𝑌 } ) | |
| 14 | 13 | eleq1d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ↔ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ∧ 𝑧 = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) → ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ↔ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) ) |
| 16 | simp3 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ∧ 𝑧 = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) → 𝑧 = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) | |
| 17 | 13 | fveq2d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑈 ‘ { 𝑥 , 𝑦 } ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) |
| 18 | 17 | 3adant3 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ∧ 𝑧 = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑈 ‘ { 𝑥 , 𝑦 } ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) |
| 19 | 16 18 | eqeq12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ∧ 𝑧 = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ↔ ( 𝑈 ‘ { 𝑋 , 𝑌 } ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 20 | 15 19 | anbi12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ∧ 𝑧 = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) → ( ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) ↔ ( { 𝑋 , 𝑌 } ∈ dom 𝑈 ∧ ( 𝑈 ‘ { 𝑋 , 𝑌 } ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) ) ) |
| 21 | moeq | ⊢ ∃* 𝑧 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) | |
| 22 | 21 | moani | ⊢ ∃* 𝑧 ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) |
| 23 | eqid | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) } | |
| 24 | 20 22 23 | ovigg | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑍 ∧ ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ∈ V ) → ( ( { 𝑋 , 𝑌 } ∈ dom 𝑈 ∧ ( 𝑈 ‘ { 𝑋 , 𝑌 } ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑋 { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) } 𝑌 ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 25 | 4 5 12 24 | syl3anc | ⊢ ( 𝜑 → ( ( { 𝑋 , 𝑌 } ∈ dom 𝑈 ∧ ( 𝑈 ‘ { 𝑋 , 𝑌 } ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑋 { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) } 𝑌 ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) → ( ( { 𝑋 , 𝑌 } ∈ dom 𝑈 ∧ ( 𝑈 ‘ { 𝑋 , 𝑌 } ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑋 { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) } 𝑌 ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 27 | 10 11 26 | mp2and | ⊢ ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) → ( 𝑋 { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ∧ 𝑧 = ( 𝑈 ‘ { 𝑥 , 𝑦 } ) ) } 𝑌 ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) |
| 28 | 9 27 | eqtrd | ⊢ ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) |
| 29 | 1 2 3 4 5 | joindef | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ↔ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) ) |
| 30 | 29 | notbid | ⊢ ( 𝜑 → ( ¬ 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ↔ ¬ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) ) |
| 31 | df-ov | ⊢ ( 𝑋 ∨ 𝑌 ) = ( ∨ ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 32 | ndmfv | ⊢ ( ¬ 〈 𝑋 , 𝑌 〉 ∈ dom ∨ → ( ∨ ‘ 〈 𝑋 , 𝑌 〉 ) = ∅ ) | |
| 33 | 31 32 | eqtrid | ⊢ ( ¬ 〈 𝑋 , 𝑌 〉 ∈ dom ∨ → ( 𝑋 ∨ 𝑌 ) = ∅ ) |
| 34 | 30 33 | biimtrrdi | ⊢ ( 𝜑 → ( ¬ { 𝑋 , 𝑌 } ∈ dom 𝑈 → ( 𝑋 ∨ 𝑌 ) = ∅ ) ) |
| 35 | 34 | imp | ⊢ ( ( 𝜑 ∧ ¬ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) → ( 𝑋 ∨ 𝑌 ) = ∅ ) |
| 36 | ndmfv | ⊢ ( ¬ { 𝑋 , 𝑌 } ∈ dom 𝑈 → ( 𝑈 ‘ { 𝑋 , 𝑌 } ) = ∅ ) | |
| 37 | 36 | adantl | ⊢ ( ( 𝜑 ∧ ¬ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) → ( 𝑈 ‘ { 𝑋 , 𝑌 } ) = ∅ ) |
| 38 | 35 37 | eqtr4d | ⊢ ( ( 𝜑 ∧ ¬ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) |
| 39 | 28 38 | pm2.61dan | ⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) |