This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function which augments a given structure G with a norm N . (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngval.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| tngval.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| tngval.d | ⊢ 𝐷 = ( 𝑁 ∘ − ) | ||
| tngval.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | tngval | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝑇 = ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , 𝐷 〉 ) sSet 〈 ( TopSet ‘ ndx ) , 𝐽 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngval.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| 2 | tngval.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | tngval.d | ⊢ 𝐷 = ( 𝑁 ∘ − ) | |
| 4 | tngval.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 5 | elex | ⊢ ( 𝐺 ∈ 𝑉 → 𝐺 ∈ V ) | |
| 6 | elex | ⊢ ( 𝑁 ∈ 𝑊 → 𝑁 ∈ V ) | |
| 7 | simpl | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝑁 ) → 𝑔 = 𝐺 ) | |
| 8 | simpr | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝑁 ) → 𝑓 = 𝑁 ) | |
| 9 | 7 | fveq2d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝑁 ) → ( -g ‘ 𝑔 ) = ( -g ‘ 𝐺 ) ) |
| 10 | 9 2 | eqtr4di | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝑁 ) → ( -g ‘ 𝑔 ) = − ) |
| 11 | 8 10 | coeq12d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝑁 ) → ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) = ( 𝑁 ∘ − ) ) |
| 12 | 11 3 | eqtr4di | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝑁 ) → ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) = 𝐷 ) |
| 13 | 12 | opeq2d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝑁 ) → 〈 ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) 〉 = 〈 ( dist ‘ ndx ) , 𝐷 〉 ) |
| 14 | 7 13 | oveq12d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝑁 ) → ( 𝑔 sSet 〈 ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) 〉 ) = ( 𝐺 sSet 〈 ( dist ‘ ndx ) , 𝐷 〉 ) ) |
| 15 | 12 | fveq2d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝑁 ) → ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) = ( MetOpen ‘ 𝐷 ) ) |
| 16 | 15 4 | eqtr4di | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝑁 ) → ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) = 𝐽 ) |
| 17 | 16 | opeq2d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝑁 ) → 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) 〉 = 〈 ( TopSet ‘ ndx ) , 𝐽 〉 ) |
| 18 | 14 17 | oveq12d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝑁 ) → ( ( 𝑔 sSet 〈 ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) 〉 ) = ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , 𝐷 〉 ) sSet 〈 ( TopSet ‘ ndx ) , 𝐽 〉 ) ) |
| 19 | df-tng | ⊢ toNrmGrp = ( 𝑔 ∈ V , 𝑓 ∈ V ↦ ( ( 𝑔 sSet 〈 ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) 〉 ) ) | |
| 20 | ovex | ⊢ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , 𝐷 〉 ) sSet 〈 ( TopSet ‘ ndx ) , 𝐽 〉 ) ∈ V | |
| 21 | 18 19 20 | ovmpoa | ⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ V ) → ( 𝐺 toNrmGrp 𝑁 ) = ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , 𝐷 〉 ) sSet 〈 ( TopSet ‘ ndx ) , 𝐽 〉 ) ) |
| 22 | 5 6 21 | syl2an | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( 𝐺 toNrmGrp 𝑁 ) = ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , 𝐷 〉 ) sSet 〈 ( TopSet ‘ ndx ) , 𝐽 〉 ) ) |
| 23 | 1 22 | eqtrid | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝑇 = ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , 𝐷 〉 ) sSet 〈 ( TopSet ‘ ndx ) , 𝐽 〉 ) ) |