This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constructed metric space is a metric space given a metric. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tmsbas.k | ⊢ 𝐾 = ( toMetSp ‘ 𝐷 ) | |
| Assertion | tmsms | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐾 ∈ MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsbas.k | ⊢ 𝐾 = ( toMetSp ‘ 𝐷 ) | |
| 2 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | 1 | tmsxms | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐾 ∈ ∞MetSp ) |
| 4 | 2 3 | syl | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐾 ∈ ∞MetSp ) |
| 5 | 1 | tmsds | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 = ( dist ‘ 𝐾 ) ) |
| 6 | 2 5 | syl | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 = ( dist ‘ 𝐾 ) ) |
| 7 | 1 | tmsbas | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
| 8 | 2 7 | syl | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( Met ‘ 𝑋 ) = ( Met ‘ ( Base ‘ 𝐾 ) ) ) |
| 10 | 6 9 | eleq12d | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐷 ∈ ( Met ‘ 𝑋 ) ↔ ( dist ‘ 𝐾 ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 11 | 10 | ibi | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( dist ‘ 𝐾 ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) |
| 12 | ssid | ⊢ ( Base ‘ 𝐾 ) ⊆ ( Base ‘ 𝐾 ) | |
| 13 | metres2 | ⊢ ( ( ( dist ‘ 𝐾 ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ⊆ ( Base ‘ 𝐾 ) ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) | |
| 14 | 11 12 13 | sylancl | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) |
| 15 | eqid | ⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) | |
| 16 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 17 | eqid | ⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) | |
| 18 | 15 16 17 | isms | ⊢ ( 𝐾 ∈ MetSp ↔ ( 𝐾 ∈ ∞MetSp ∧ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 19 | 4 14 18 | sylanbrc | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐾 ∈ MetSp ) |