This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constructed metric space is an extended metric space. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tmsbas.k | ⊢ 𝐾 = ( toMetSp ‘ 𝐷 ) | |
| Assertion | tmsxms | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐾 ∈ ∞MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsbas.k | ⊢ 𝐾 = ( toMetSp ‘ 𝐷 ) | |
| 2 | 1 | tmsds | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 = ( dist ‘ 𝐾 ) ) |
| 3 | 1 | tmsbas | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ∞Met ‘ 𝑋 ) = ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) |
| 5 | 2 4 | eleq12d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ ( dist ‘ 𝐾 ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 6 | 5 | ibi | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( dist ‘ 𝐾 ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) |
| 7 | ssid | ⊢ ( Base ‘ 𝐾 ) ⊆ ( Base ‘ 𝐾 ) | |
| 8 | xmetres2 | ⊢ ( ( ( dist ‘ 𝐾 ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ⊆ ( Base ‘ 𝐾 ) ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) | |
| 9 | 6 7 8 | sylancl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) |
| 10 | xmetf | ⊢ ( ( dist ‘ 𝐾 ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) → ( dist ‘ 𝐾 ) : ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ⟶ ℝ* ) | |
| 11 | ffn | ⊢ ( ( dist ‘ 𝐾 ) : ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ⟶ ℝ* → ( dist ‘ 𝐾 ) Fn ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) | |
| 12 | fnresdm | ⊢ ( ( dist ‘ 𝐾 ) Fn ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( dist ‘ 𝐾 ) ) | |
| 13 | 6 10 11 12 | 4syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( dist ‘ 𝐾 ) ) |
| 14 | 13 2 | eqtr4d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = 𝐷 ) |
| 15 | 14 | fveq2d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) = ( MetOpen ‘ 𝐷 ) ) |
| 16 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 17 | 1 16 | tmstopn | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐾 ) ) |
| 18 | 15 17 | eqtr2d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
| 19 | eqid | ⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) | |
| 20 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 21 | eqid | ⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) | |
| 22 | 19 20 21 | isxms2 | ⊢ ( 𝐾 ∈ ∞MetSp ↔ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ∧ ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) ) |
| 23 | 9 18 22 | sylanbrc | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐾 ∈ ∞MetSp ) |